## SIEMENS

## SIMATIC

## S7-300 Programmable Controller Integrated Functions CPU 312 IFM/314 IFM

| Preface, Contents |  |
| :--- | :---: |
| Product Overview | $\mathbf{1}$ |
| What you Should Know about the <br> Integrated Functions | $\mathbf{2}$ |
| Frequency Meter Integrated <br> Function | $\mathbf{3}$ |
| Counter Integrated Function | $\mathbf{4}$ |
| Counter A/B Integrated Function <br> (CPU 314 IFM) | $\mathbf{5}$ |
| Positioning Integrated Function <br> (CPU 314 IFM) | $\mathbf{6}$ |

## Manual

| Appendices |
| :--- |
| Technical Specifications of the <br> Frequency Meter Integrated <br> Function A <br> Technical Specifications of the <br> Counter Integrated Function B <br> Technical Specifications of the <br> Counter A/B Integrated Function C <br> Technical Specifications of the <br> Positioning Integrated Function D <br> Troubleshooting E <br> SIMATIC S7 Reference Literature F <br> Using the Integrated Functions <br> with the OP 3 G <br> Glossar, Index  |

EWA 4NEB 710 6058-02a

## Safety Guidelines



## Qualified Personnel

Correct Usage


## Trademarks

## SIMATIC ${ }^{\circledR}$ and SINEC ${ }^{\circledR}$ are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might infringe upon the rights of the trademark owners.

## Copyright © Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Siemens AG
Automation Group Industrial Automation Systems P.O. Box 4848, D-90327 Nuremberg

## Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Technical data subject to change.
© Siemens AG 1996

## Preface

## Purpose

## Audience

## Scope of this

 ManualThe information in this manual enables you to solve automation tasks with the integrated functions of the CPU 312 IFM or CPU 314 IFM.

This manual is addressed to users who wish to use the integrated functions of the CPU 312 IFM/CPU 314 IFM

Users will find the following information:

- Basic information on the integrated functions
- A description of the Frequency Meter, Counter, Counter A/B and Positioning integrated functions
- The technical specifications of the integrated functions
- The use of the integrated functions with the OP3.

The hardware of the CPUs and the S7-300 modules is described in the manuals S7-300 Programmable Controller, Installation and Hardware and S7-300, M7-300 Programmable Controllers, Module Specifications.

This manual is valid for:

| CPU | Order No. | From Product Versions |
| :---: | :---: | :---: |
| CPU 312 IFM | 6ES7 312-5AC01-0AB0 | 01 |
| CPU 314 IFM | 6ES7 314-5AE02-0AB0 | 01 |

This manual describes the integrated functions contained in the CPU 312 IFM and CPU 314 IFM at the date of issue of the manual. We reserve the right to describe modifications to the integrated functions in a separate Product Information.

Compared to the previous version, the manual Integrated Functions with the order number 6ES7 398-8CA00-8BA0, this manual has been extended with a description of the new features of the Frequency Meter integrated function.

## Approbations

C

## Recycling and Disposal

The following approbations exist for the S7-300:
UL-Recognition-Mark
Underwriters Laboratories (UL) in accordance with Standard UL 508, File No. 116536

CSA-Certification-Mark
Canadian Standard Association (CSA) in accordance with Standard C22.2 No. 142, File No. LR 48323

Our products conform to the requirements of EC Directive 89/336/EEC "Electromagnetic Compatibility" and the harmonized European standards (ENs) listed therein.
The EU certificates of conformity are held at the disposal of the competent authorities in accordance with the above-named EC directive, Article 10, at the following address:

Siemens Aktiengesellschaft<br>Bereich Automatisierungstechnik<br>A \& D AS E 14<br>Postfach 1963<br>D-92209 Amberg<br>Federal Republic of Germany

The SIMATIC S7-300 is an environmentally-friendly product!
The SIMATIC S7-300 is characterized by the following points:

- The housing plastic is equipped with halogen-free flameproofing despite its high level of fireproofing.
- Laser labeling (that is, no paper labels)
- Plastics materials labeled in accordance with DIN 54840
- Reduction in materials used thanks to more compact design, fewer components thanks to integration in ASICs

The SIMATIC S7-300 can be recycled thanks to the low level of pollutants in its equipment.

Please contact the following address for environmentally-friendly recycling and disposal of your old SIMATIC equipment:

```
Siemens Aktiengesellschaft
Technische Dienstleistungen
ATD TD 3 Kreislaufwirtschaft
Postfach 3240
D-91050 Erlangen
Telephone: ++49 9131/7-3 36 98
Fax: ++49 9131/7-2 66 43
```

This Siemens service department provides a comprehensive and flexible disposal system with customized advice at a fixed price. After disposal, you receive a breakdown of the dismantling procedure with information on the proportions of materials and the relevant material record documentation.

Scope of the Documentation Package

The documentation should be ordered separately from the CPU:

| CPU | Documentation |
| :---: | :--- |
| CPU 312 IFM | $\bullet$S7-300 Programmable Controller, Installation and <br> or |
| Hardware Manual |  |
| CPU 314 IFM | $\bullet$S7-300 and M7-300 Programmable Controllers, <br> Module Specifications Reference Manual |
|  | $\bullet$ S7-300 Programmable Controller Instruction List |

In Appendix $F$, you will find a list of documentation which you require for programming and starting up of the S7-300.

You can also order the entire SIMATIC S7 documentation as SIMATIC S7 reference documentation on CD-ROM.

This manual features the following access aids for fast reference to specific information:

- The manual starts with a complete table of contents, also including a list of all figures and tables appearing in the manual.
- In the various chapters, the headlines on the left margin highlight the contents of the particular section.
- The glossary in the last chapter of the Appendix explains important terms employed in the manual.
- The index at the end of this manual enables you to get fast access to the information required.

If you have any queries about the products described in this manual, please contact your local Siemens representative. You can find the addresses of Siemens representatives in the Appendix "Siemens Worldwide" of the manual S7-300 Programmable Controller, Installation and Hardware.

If you have any questions or suggestions concerning this manual, please fill in the form at the end of this manual and return it to the specified address. Please feel free to enter your personal assessment of the manual in the form provided.

We offer a range of courses to help get you started with the SIMATIC S7 programmable controller. Please contact your local training center or the central training center in Nuremberg, D-90327 Germany, Tel. +499118953154.

## Contents

1 Product Overview
1.1 Introduction to the Integrated Functions ..... 1-2
1.2 Integrated Functions on the CPU 312 IFM ..... 1-4
1.3 Integrated Functions on the CPU 314 IFM ..... 1-5
1.4 Guide through the Manual for Successful Implementation of an Integrated Function ..... 1-6
2 What you Should Know about the Integrated Functions
2.1 How the Integrated Functions are Included in the CPU 312 IFM/CPU 314 IFM ..... 2-2
2.2 How to Include the Integrated Function in the User Program ..... 2-4
2.3 Functions and Properties of the Instance DB ..... 2-5
2.4 How to Activate and Configure the Integrated Functions ..... 2-6
2.5 How to Test the Integrated Functions ..... 2-7
2.6 How the Integrated Functions Behave on Operating Mode Transitions on the CPU ..... 2-8
3 Frequency Meter Integrated Function
3.1 Function Overview ..... 3-2
3.2 How the Frequency Meter Integrated Function Operates ..... 3-3
3.3 Function of the Comparator ..... 3-5
3.4 Assigning Parameters ..... 3-7
3.5 Connecting the Sensors to the Integrated Inputs/Outputs ..... 3-9
3.6 System Function Block 30 ..... 3-11
3.7 Structure of the Instance DB ..... 3-13
3.8 Evaluation of Process Interrupts ..... 3-15
3.9 Calculating the Cycle Time ..... 3-17
3.10 Example Applications ..... 3-18
3.10.1 Speed Monitoring within a Fixed Speed Range ..... 3-19
3.10.2 Speed Monitoring within Two Speed Ranges ..... 3-26
4 Counter Integrated Function
4.1 Function Overview ..... 4-2
4.2 How the Counter Operates ..... 4-3
4.3 Function of a Comparator ..... 4-5
4.4 Assigning Parameters ..... 4-8
4.5 Wiring ..... 4-10
4.5.1 Connecting Sensors to the Integrated Inputs/Outputs ..... 4-11
4.5.2 Connecting Actuators to the Integrated Inputs/Outputs ..... 4-14
4.6 System Function Block 29 ..... 4-16
4.7 Structure of the Instance DB ..... 4-19
4.8 Evaluation of Process Interrupts ..... 4-20
4.9 Calculating the Cycle Time and Response Times ..... 4-22
4.10 Example Applications ..... 4-24
4.10.1 Regular Counting with Comparison Value ..... 4-25
4.10.2 Differential Counting ..... 4-31
4.10.3 Periodic Counting ..... 4-40
5 Counter A/B Integrated Function (CPU 314 IFM)
5.1 Function Overview ..... 5-2
5.2 How the Counters Operate ..... 5-3
5.3 Function of a Comparator ..... 5-5
5.4 Assigning Parameters ..... 5-7
5.5 Wiring ..... 5-9
5.5.1 Connecting Sensors to the Integrated Inputs/Outputs ..... 5-10
5.5.2 Connecting Actuators to the Integrated Inputs/Outputs ..... 5-12
5.6 System Function Block 38 ..... 5-13
5.7 Structure of the Instance DB ..... 5-15
5.8 Evaluation of Process Interrupts ..... 5-16
5.9 Calculating the Cycle Time and Response Times ..... 5-18
$6 \quad$ Positioning Integrated Function (CPU 314 IFM) ..... 6-1
6.1 Introduction to the Positioning Integrated Function ..... 6-2
6.1.1 Encoders and Power Sections for the Positioning Integrated Function ..... 6-3
6.1.2 Reference Point Approach ..... 6-5
6.1.3 Jog Mode ..... 6-7
6.1.4 Controlling Rapid Traverse/Creep Speed Drives ..... 6-9
6.1.5 Controlling the Drive via Frequency Converters ..... 6-11
6.2 Functional Principle of the Positioning Integrated Function ..... 6-15
6.3 Parameter Assignment ..... 6-19
6.4 Controlling the Outputs via the Integrated Function ..... 6-20
6.5 Effect of the Distance Between the Start and Destination Position on Controlling the Outputs ..... 6-22
6.6 Wiring ..... 6-23
6.6.1 Connecting the Incremental Encoder and the Reference Point Switch to the Integral Inputs/Outputs ..... 6-24
6.6.2 Connecting the Power Section to the Integral Inputs/Outputs ..... 6-26
6.7 System Function Block 39 ..... 6-30
6.7.1 Synchronization ..... 6-33
6.7.2 Execute Jog Mode ..... 6-38
6.7.3 Executing a Positioning Operation ..... 6-40
6.7.4 Behavior of the Input and Output Parameters of SFB 39 at CPU Operating State Transitions ..... 6-42
6.8 Structure of the Instance DB ..... 6-43
6.9 Calculating the Cycle Time ..... 6-44
6.10 Application Examples ..... 6-45
6.10.1 Cutting Foil to Length ..... 6-46
6.10.2 Positioning Paint Cans ..... 6-52
6.10.3 Positioning a Worktable ..... 6-60
A Technical Specifications of the Frequency Meter Integrated Function
B Technical Specifications of the Counter Integrated Function
C Technical Specifications of the Counter A/B Integrated Function (CPU 314 IFM)
D Technical Specifications of the Positioning Integrated Function (CPU 314 IFM)
E Troubleshooting
F SIMATIC S7 Reference Literature
G Using the Integrated Functions with the OP3
G. 1 Introduction ..... G-2
G. 2 Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3 ..... G-3
G. 3 System Configuration for Installation and Operation ..... G-4
G. 4 Selecting and Using Standard IF Displays ..... G-6
G.4.1 Selecting the Standard IF Displays ..... G-7
G.4.2 Using the Standard Display for the Frequency Meter IF ..... G-8
G.4.3 Using the Standard Display for the Counter IF ..... G-9
G.4.4 Using the Standard Display for the Counter A/B IF ..... G-10
G.4.5 Using the Standard Display for the Positioning IF ..... G-11
G. 5 Using the Standard IF Displays in ProTool/Lite ..... G-13
G.5.1 Items and Variables in the Standard IF Displays ..... G-14
G.5.2 Changing the Standard Configuration ..... G-16
G. 6 Accessing the Instance DB from OP3 and SFB ..... G-19
Glossary
Index

## Figures

1-1 Integrated Inputs/Outputs of the CPU 312 IFM for Integrated Functions ..... 1-4
1-2 Integrated Inputs/Outputs of the CPU 314 IFM for Integrated Functions ..... 1-5
2-1 Inclusion of the Integrated Functions in the CPU 312 IFM ..... 2-2
2-2 Operating Mode Transitions ..... 2-9
3-1 Block Diagram for Frequency Meter Integrated Function ..... 3-2
3-2 Display of First Valid Frequency Value ..... 3-4
3-3 Function of the Comparator ..... 3-6
3-4 Sensor Wiring (CPU 312 IFM) ..... 3-10
3-5 Graphical Illustration of SFB 30 ..... 3-12
3-6 Start Information of OB 40: Which Event Triggered Interrupt (Frequency Meter)? ..... 3-16
3-7 Speed Monitoring of a Shaft (1) ..... 3-19
3-8 Sequence Diagram for Example 1 ..... 3-21
3-9 Initialization of SFB 30 at Start-Up (1) ..... 3-22
3-10 Initialization of SFB 30 in the Cyclic Program (1) ..... 3-23
3-11 Speed Monitoring of a Shaft (2) ..... 3-27
3-12 Sequence Diagram for Example 2 ..... 3-28
3-13 Initialization of SFB 30 on Start-Up (2) ..... 3-29
3-14 Initialization of SFB 30 in the Cyclic Program (2) ..... 3-30
4-1 Block Diagram for Counter Integrated Function ..... 4-2
4-2 Counting Pulses and Actual Value of the Counter ..... 4-3
4-3 Events to which a Comparator Reacts ..... 4-5
4-4 Example: Trigger Reactions ..... 4-7
4-5 Timing of the Hardware Start/Stop and Direction Digital Inputs ..... 4-12
4-6 Sensor Wiring ..... 4-13
4-7 Actuator Wiring ..... 4-15
4-8 Graphical Illustration of SFB 29 ..... 4-16
4-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter IF)? ..... 4-22
4-10 Response Paths ..... 4-23
4-11 Regular Counting with Comparison Value ..... 4-25
4-12 Sequence Diagram for Example 1 ..... 4-27
4-13 Initialization of SFB 29 on Start-Up (1) ..... 4-28
4-14 Differential Counting ..... 4-31
4-15 Sequence Diagram for Example 2 ..... 4-33
4-16 Initialization of SFB 29 on Start-Up (2) ..... 4-36
4-17 Initialization of SFB 29 in the Cyclic Program (2) ..... 4-36
4-18 Periodic Counting ..... 4-40
4-19 Sequence Diagram for Example 3 ..... 4-41
4-20 Initialization of SFB 29 on Start-Up (3) ..... 4-43
5-1 Block Diagram for Counter A/B Integrated Function ..... 5-2
5-2 Counting Pulses and Actual Value of the Counter ..... 5-3
5-3 Events to which a Comparator Reacts ..... 5-5
5-4 Example: Trigger Reactions ..... 5-6
5-5 Timing of the Direction Digital Inputs for Counters A and B ..... 5-10
5-6 Sensor Connecting ..... 5-11
5-7 Actuator Connecting ..... 5-12
5-8 Graphical Illustration of SFB 38 ..... 5-13
5-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter A/B IF)5-17
5-10 Response Paths ..... 5-19
6-1 Encoder Classification ..... 6-3
6-2 Signal Shapes of Asymmetrical Incremental Encoders ..... 6-3
6-3 Classification According to Drive Control ..... 6-4
6-4 Worktable Example ..... 6-5
6-5 Evaluation of the Reference Point Switch ..... 6-6
6-6 Velocity Profile in the Case of Rapid Traverse and Creep Speed Drives ..... 6-9
6-7 Positioning Operation in Forward Direction in the Case of Rapid Traverse and Creep Speed Drives ..... 6-10
6-8 Velocity/Acceleration Profile in the Case of Frequency Converters ..... 6-11
6-9 Switch-Off Difference when Controlling a Frequency Converter ..... 6-12
6-10 Positioning Operation in Forward Direction (1 Analog and 2 Digital Outputs for Frequency Converter) ..... 6-13
6-11 Positioning Operation in Forward Direction (1 Analog Output for Frequency Converters) ..... 6-14
6-12 Inputs and Outputs of the Positioning Integrated Function ..... 6-15
6-13 Inputs and Outputs of the Positioning Integrated Function ..... 6-16
6-14 Analog Value Output in Steps, BREAK = 0 ..... 6-20
6-15 Connecting Incremental Encoder and Reference Point Switch ..... 6-25
6-16 Connecting the Contactor Circuit ..... 6-27
6-17 Connecting a Frequency Converter with 1 Analog Output and 2 Digital Outputs ..... 6-28
6-18 Connecting a Frequency Converter with 1 Analog Output ..... 6-29
6-19 Graphical Representation of SFB 39 ..... 6-30
6-20 Starting Synchronization ..... 6-34
6-21 Hardware Synchronization and Resynchronization ..... 6-36
6-22 Jog Mode Forward and Terminating/Aborting Jog Mode ..... 6-39
6-23 Positioning Operation for Rapid Traverse/Creep Speed Drive Forward ..... 6-41
6-24 Cutting Foil to Length ..... 6-46
6-25 Assignment of Distances/Pulses ..... 6-47
6-26 Initialization of SFB 39 on Start-Up (1) ..... 6-49
6-27 Positioning Paint Cans ..... 6-53
6-28 Positioning Operation Sequence ..... 6-54
6-29 Assignment of Distances/Pulses ..... 6-55
6-30 Initialization of SFB 39 on Start-Up (2) ..... 6-57
6-31 Positioning a Worktable ..... 6-61
6-32 Assignment of Distances/Pulses to the Switches ..... 6-62
6-33 Initialization of SFB 39 at Start-Up (3) ..... 6-64
A-1 Properties of the Measured Signal ..... A-2
B-1 Properties of the Counting Pulse ..... B-2
C-1 Properties of the Counter Pulses ..... C-2
D-1 Pulse Evaluation and Properties of the Counter Pulses ..... D-2
D-2 Terminal Connection Model for Incremental Encoder 6FX 2001-4 ..... D-3
G-1 Point-to-Point Connection (Setup for Configuring the OP3) ..... G-5
G-2 Multipoint Connection ..... G-5
G-3 Operating Hierarchy ..... G-7
G-4 Structure of the Standard Display for the Frequency Meter IF ..... G-8
G-5 Structure of the Standard Display for the Counter IF ..... G-9
G-6 Structure of the Standard Display for the Counter A/B IF ..... G-10
G-7 Structure of the Standard Display for Positioning IF ..... G-11

## Tables

1-1 Selection Criteria for the Automation Task ..... 1-3
1-2 Guide through the Manual ..... 1-6
2-1 Inclusion of the Integrated Functions in the CPU 312 IFM ..... 2-3
2-2 Test Functions for CPU 312 IFM and CPU 314 IFM ..... 2-7
2-3 Operating Mode of the CPU ..... 2-8
2-4 Operating Mode Transitions ..... 2-9
3-1 Overview: Integrated Inputs/Outputs for Frequency Meter Integrated Function on CPU 312 IFM and CPU 314 IFM ..... 3-1
3-2 "Integrated Inputs/Outputs" Parameter Block ..... 3-7
3-3 Measurement Resolution with Sample Times of $0.1 \mathrm{~s} ; 1 \mathrm{~s}$ and 10 s ..... 3-8
3-4 Measurement Accuracy with Sample Times of $0.1 \mathrm{~s} ; 1 \mathrm{~s}$ and 10 s ..... 3-8
3-5 Measurement Accuracy with Sample Times of $1 \mathrm{~ms} ; 2 \mathrm{~ms}$ and 4 ms ..... 3-9
3-6 Factor for Calculating the Maximum Measurement Error for IF Frequency Meter ..... 3-9
3-7 Terminals for the Sensors (CPU 312 IFM) ..... 3-10
3-8 Input Parameters of SFB 30 ..... 3-12
3-9 Output Parameters of SFB 30 ..... 3-13
3-10 Instance DB of SFB 30 ..... 3-14
3-11 Events which can Cause a Process Interrupt ..... 3-15
3-12 Start Information of OB 40 for Frequency Meter Integrated Function ..... 3-16
3-13 Wiring of the Inputs and Outputs (1) ..... 3-20
3-14 Parameters for the Frequency Meter Example ..... 3-21
3-15 Determination of the Comparison Values ..... 3-22
3-16 Global Data for Example 1 ..... 3-24
3-17 Wiring of the Inputs and Outputs (2) ..... 3-27
3-18 Determination of the Comparison Values for Speed Range 2 ..... 3-29
3-19 Global Data for Example 2 ..... 3-31
4-1 Overview: Integrated Inputs/Outputs for Counter Integrated Function on CPU 312 IFM and CPU 314 IFM ..... 4-1
4-2 "Integrated Inputs/Outputs" Parameter Block ..... 4-8
4-3 Function of the Direction Digital Input ..... 4-11
4-4 Terminals for the Sensors ..... 4-12
4-5 Terminals for the Actuators ..... 4-14
4-6 Input Parameters of SFB 29 ..... 4-17
4-7 Output Parameters of SFB 29 ..... 4-18
4-8 Instance DB of SFB 29 ..... 4-19
4-9 Events which can Cause a Process Interrupt ..... 4-20
4-10 Start Information of OB 40 for Counter Integrated Function ..... 4-20
4-11 Response Times of the Counter Integrated Function ..... 4-23
4-12 Wiring of the Inputs and Outputs (1) ..... 4-26
4-13 Parameters for Example 1 ..... 4-27
4-14 Global Data for Example 1 ..... 4-29
4-15 Wiring of the Inputs and Outputs (2) ..... 4-32
4-16 Parameters for Example 2 ..... 4-34
4-17 Global Data for Example 2 ..... 4-37
4-18 Wiring of the Inputs and Outputs (3) ..... 4-41
4-19 Parameters for Example 3 ..... 4-42
4-20 Global Data for Example 3 ..... 4-43
5-1 Counter A/B Register ..... 5-7
5-2 Terminals for the Sensors ..... 5-10
5-3 Terminals for the Actuators ..... 5-12
5-4 Input Parameters of SFB 38 ..... 5-13
5-5 Output Parameters of SFB 38 ..... 5-14
5-6 Instance DB of SFB 38 ..... 5-15
5-7 Events which can Cause a Process Interrupt ..... 5-16
5-8 Start Information of OB 40 for Counter A/B Integrated Function ..... 5-17
5-9 Response Times of the Counter Integrated Function ..... 5-19
6-1 Power Sections and Drives ..... 6-4
6-2 Positioning Operation Sequence ..... 6-15
6-3 Overview of the Function of the Hardware Inputs/Outputs ..... 6-17
6-4 Overview of the Function of the Software Inputs/Outputs ..... 6-17
6-5 "Positioning" Register ..... 6-19
6-6 Controlling Rapid Traverse/Creep Speed Drives ..... 6-22
6-7 Controlling Frequency Converters ..... 6-22
6-8 Terminals for Incremental Encoders and Reference Point Switch ..... 6-24
6-9 Terminals for the Contactor Circuit ..... 6-26
6-10 Terminals for Frequency Converters ..... 6-28
6-11 Input Parameters of SFB 39 ..... 6-31
6-12 Output Parameters of SFB 39 ..... 6-32
6-13 Starting Synchronization ..... 6-35
6-14 Hardware Synchronization and Resynchronization ..... 6-36
6-15 Special Cases During Synchronization (Frequency Converter) ..... 6-37
6-16 Special Cases During Synchronization (Contactor Circuit) ..... 6-37
6-17 Selecting Jog Mode ..... 6-38
6-18 Executing a Positioning Operation ..... 6-40
6-19 Positioning Operation for Rapid Traverse/Creep Speed Drive ..... 6-41
6-20 Effects of a Change in CPU Operating State on the Integrated Function ..... 6-42
6-21 Instance DB of SFB 39 ..... 6-43
6-22 Switching the Inputs and Outputs (Example 1) ..... 6-47
6-23 Parameters for Cutting Foil to Length ..... 6-48
6-24 Example 1: Positioning, DB 10 Structure ..... 6-49
6-25 Switching the Inputs and Outputs (Example 2) ..... 6-53
6-26 Parameters for Positioning Paint Cans ..... 6-56
6-27 Example 2: Positioning, DB 2 Structure ..... 6-57
6-28 Switching the Inputs and Outputs (Example 3) ..... 6-61
6-29 Parameters for Positioning a Worktable ..... 6-63
6-30 Example 3: Positioning, Structure of DB 60 ..... 6-65
A-1 Technical Specifications for Frequency Meter Integrated Function ..... A-1
B-1 Technical Specifications for Counter Integrated Function ..... B-1
C-1 Technical Specifications of the Counter A/B Integrated Function ..... C-1
D-1 Technical Specifications of the Positioning Integrated Function ..... D-1
E-1 Troubleshooting ..... E-1
F-1 Manuals for Programming and Starting Up of the S7-300 ..... F-1
G-1 Selecting the Standard IF Displays ..... G-7
G-2 Standard Display for the Frequency Meter IF ..... G-8
G-3 Standard Display for the Counter IF ..... G-9
G-4 Standard Display for the Counter A/B IF ..... G-10
G-5 Standard Display for the Positioning IF ..... G-11
G-6 Names and Functions of the Standard IF Displays ..... G-14
G-8 ZIF_COUNTER: Items and Variables ..... G-15
G-9 ZIF_HSC_A or ZIF_HSC_B: Entries and Variables ..... G-15
G-10 ZIF_POS: Entries and Variables ..... G-15
G-11 Modifying Operator Guidance ..... G-16
G-13 Modifying the PLC and the Data Interface to the Instance DB ..... G-18
G-12 Modifying Displays ..... G-17

## Product Overview

In this Chapter

| Section | Contents | Page |
| :---: | :--- | :---: |
| 1.1 | Introduction to the Integrated Functions | $1-2$ |
| 1.2 | Integrated Functions on the CPU 312 IFM | $1-4$ |
| 1.3 | Integrated Functions on the CPU 314 IFM | $1-5$ |
| 1.4 | Guide through the Manual for Successful Implementation of <br> an Integrated Function | $1-6$ |

### 1.1 Introduction to the Integrated Functions

| Possible Solutions | For counting, frequency measurement and positioning axes, the SIMATIC |
| :--- | :--- |
| for Your Automa- | S7-300 provides the following 3 possible solutions: |
| tion Task | - User program (STEP 7 operations) |
|  | - Integrated functions of the CPU 312 IFM/CPU 314 IFM |
|  | - Function modules for counting, frequency measurement and positioning |
|  | axes |

## Integrated

 Functions
## CPU 312 IFM

## CPU 314 IFM

Properties of the Integrated Functions

The CPU 314 IFM provides the following:

- Frequency Meter integrated function
- Counter integrated function (1 up and 1 down counter)
- Counter $\mathrm{A} / \mathrm{B}$ integrated function (2 up and 2 down counters, A and B )
- Positioning integrated function (open-loop positioning)

The integrated functions operate in parallel to the user program and extend the cycle time of the CPU only minimally. The integrated functions access the integrated inputs/outputs of the CPU direct. The Counter and Counter $\mathrm{A} / \mathrm{B}$ integrated functions can initiate process interrupts.

You can operate and control the integrated functions with an operator panel (OP), programming device or PC.

If you use an OP3, standard displays are provided for the integrated functions (see Appendix G).

Selection Criteria

The Integrated Functions Solution

## Examples of Frequency Meter Integrated Function

## Examples of the Counter and Counter A/B Integrated Functions

In Table 1-1, you will find a comparison of the three possible solutions to your automation task with the main selection criteria:

Table 1-1 Selection Criteria for the Automation Task

| Selection Criteria | User Program | Integrated <br> Functions | Function <br> Modules |
| :--- | :--- | :--- | :--- |
| Direct link to the inputs/out- <br> puts | No | Yes | Yes |
| Increase in cycle time | Yes | Minimal | No |
| Suitability for different <br> applications | Low | Medium <br> (50\% of solu- <br> tions) | High <br> (95\% of solu- <br> tions) |
| Performance in relation to <br> response time | Low | Medium | High |
| Handling of process errors <br> (e.g. wire break) | No | Limited | Yes |

You can use the integrated functions as a low-cost solution to automation tasks which do not require the performance capabilities of a function module.

The following examples illustrate the possible applications of the Frequency Meter integrated function:

- Measurement of the rotation speed of a shaft with monitoring of the permissible speed range
- Measurement of throughput (items per sample time) with range monitoring

Below are some possible applications of the Counter and Counter A/B integrated functions:

- Counting a quantity with incoming and outgoing parts (up and down counting)
- Periodic quantity counting with parameterized responses when a comparison value is reached.

Below are some possible applications of the Positioning integrated function:

## Examples of the Positioning Integrated Function

- Positioning workpieces on a conveyor belt with synchronization at the start of the workpiece
- Moving a worktable to several positions for machining of a workpiece


### 1.2 Integrated Functions on the CPU 312 IFM

## Introduction

Special Integrated Inputs/Outputs

The integrated functions are connected to the automation process via the integrated inputs/outputs of the CPU 312 IFM.

The CPU 312 IFM is equipped with four special integrated inputs/outputs whose functionality can be adjusted. The following alternative settings are possible:

- 4 interrupt inputs (digital inputs)
- 4 digital inputs for the Counter integrated function
- 1 digital input for the Frequency Meter integrated function and 3 standard digital inputs

Integrated inputs/outputs not used for the integrated function can be used as standard digital inputs/outputs.

The integrated inputs/outputs of the CPU 312 IFM are illustrated in Figure 1-1. The special integrated inputs/outputs are highlighted in gray.


Figure 1-1 Integrated Inputs/Outputs of the CPU 312 IFM for Integrated Functions

### 1.3 Integrated Functions on the CPU 314 IFM

Introduction

Special Integrated Inputs/Outputs

The integrated functions are connected via the integrated inputs/outputs of the CPU 314 IFM with the automation process.

The CPU 314 IFM is equipped with four special integrated inputs/outputs whose functionality can be adjusted. The following alternative settings are possible:

- 4 interrupt inputs (digital inputs)
- 4 digital inputs for the Counter integrated function
- 4 digital inputs for the Counter $\mathrm{A} / \mathrm{B}$ integrated function
- 1 input for the Frequency Meter integrated function and 3 standard digital inputs
- 3 digital inputs for the Positioning integrated function and 1 standard digital input

Integrated inputs/outputs not used for the integrated function can be used as standard digital inputs/outputs.

Integrated Inputs/ Outputs

Figure 1-2 shows the integrated inputs/outputs of the CPU 314 IFM. The special integrated inputs/outputs are shaded in gray.


Figure 1-2 Integrated Inputs/Outputs of the CPU 314 IFM for Integrated Functions

### 1.4 Guide through the Manual for Successful Implementation of an Integrated Function

Preconditions
For the successful implementation of an integrated function, we assume that

- You know how to use the STEP 7 programming package.
- You are familiar with the hardware of the CPU 312 IFM or CPU 314 IFM.

The scope and operation of the $S T E P 7$ programming package are described in various manuals. You will find a list of the manuals with a brief description of the contents in Appendix F. The hardware of the CPUs and the range of modules are described in the manuals S7-300 Programmable Controller, Installation and Hardware and S7-300, M7-300 Programmable Controllers, Module Specifications.

## Guide

In Table 1-2, you will find the operations that you will perform step-by-step in order to start up an integrated function, and the section in the manual which you should read.

Table 1-2 Guide through the Manual

| Step | Operation | Read about the Integrated Function |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Frequency Meter | Counter | $\begin{gathered} \text { Counter } \\ \text { A/B } \end{gathered}$ | Positioning |
| 1 | Acquire basic knowledge on the behavior and handling of the integrated functions | Chapter 2 |  |  |  |
| 2 | Parameterize integrated function | Section 3.4 | Section 4.4 | Section 5.4 | Section 6.3 |
| 3 | Wire integrated function | Section 3.5 | Section 4.5 | Section 5.5 | Section 6.6 |
| 4 | Program CPU <br> - Assign system function block <br> - Evaluate process interrupts | Section $3.6$ | Section $4.6$ <br> Section 4.8 | Section $5.6$ <br> Section 5.8 | Section $6.7$ |
| 5 | Switch CPU from STOP to RUN | - |  |  |  |
| 6 | Test the integrated function | Section 2.5 |  |  |  |
| 7 | Determine the cycle and response time | Section 3.9 | Section 4.9 | Section 5.9 | Section 6.9 |

## Application Examples

Sections 3.10, 4.10 and 6.10 of this manual contain practice-oriented application examples of the integrated functions which will be of special benefit to the first-time SIMATIC S7 user. The application examples have an extremely simple structure and guide the user from the definition of the task through wiring and parameterizing of the integrated function right up to the user program.

# What you Should Know about the Integrated Functions 

In this Chapter

| Section | Contents | Page |
| :---: | :--- | :---: |
| 2.1 | How the Integrated Functions are Included in the CPU 312 <br> IFM/CPU 314 IFM | $2-2$ |
| 2.2 | How to Include the Integrated Function in the User Program | $2-4$ |
| 2.3 | Functions and Properties of the Instance DB | $2-5$ |
| 2.4 | How to Activate and Configure the Integrated Functions | $2-6$ |
| 2.5 | How to Test the Integrated Functions | $2-7$ |
| 2.6 | How the Integrated Functions Behave on Operating Mode <br> Transitions on the CPU | $2-8$ |

### 2.1 How the Integrated Functions are Included in the CPU 312 IFM/ CPU 314 IFM

Inclusion
Figure 2-1 shows the inclusion of the integrated functions in the CPU using the CPU 312 IFM as an example. An explanation is provided in the text following Figure 2.1.


Figure 2-1 Inclusion of the Integrated Functions in the CPU 312 IFM

The integrated functions are a component of the operating system on the CPU 312 IFM.

When you have assigned the parameters for an integrated function with STEP 7, the integrated function is activated.

Table 2-1 contains a description of Figure 2-1.

Table 2-1 Inclusion of the Integrated Functions in the CPU 312 IFM

| No. | Description |
| :---: | :--- |
| (1) | A system function block (SFB) is assigned to each integrated <br> function. The SFBs are integrated in the CPU. |
| (2) | The SFB is called from an organization block (OB) in the user <br> program. |
| (3) | The instance DB contains the data which are exchanged between <br> the user program and the integrated function. |
| (4) | The SFB writes data to the instance DB and reads data from the <br> instance DB. |
| (5) | An integrated function writes to and reads from the instance DB: <br> - At the cycle control point (if parameterized with STEP 7) <br> - On operating mode transitions <br> - When the SFB is called |
| (6) | An integrated function accesses the integrated inputs/outputs <br> directly without a detour via the user program. This ensures the <br> lowest response times. |
| (7) | The Counter and Counter A/B integrated functions can initiate a <br> process interrupt if an event occurs. |
| (8) | The user program provides a rapid response to the event in <br> OB 40 (interrupt OB). |

### 2.2 How to Include the Integrated Function in the User Program

## Including an Integrated Function

## Preconditions

## Calling the SFB

Points to
Remember when Calling the SFB

Interrupting the SFB

You can use either the STL editor or the LADDER editor under STEP 7 to include an integrated function in your user program. The use of STEP 7 is described in the user manual Standard Software for S7 and M7, STEP 7.

You must already have defined the number of the instance DB in STEP 7. The instance DB must also already exist in your user program.

The SFB for the integrated function can be called from the user program:

- From any organization block (for example, OB 1, OB 40, OB 100)
- From any function block (FB)
- From any function (FC)

When the SFB is called, input EN (enable) of the SFB must be set, to allow the SFB to be processed (see Section 3.6, for example).

Some of the SFB inputs of the integrated functions are edge-controlled. These inputs trigger a reaction when a positive signal edge change takes place.

If you do not call the SFB inputs cyclically in the user program, you can generate a positive edge change on the edge-controlled inputs by calling the SFB twice:

- On the first call, you set the edge-controlled inputs to " 0 ".
- On the second call, you set the edge-controlled inputs to " 1 ".

To find out which SB inputs are edge-controlled, see Sections 3.6. 4.6, 5.6 and 6.7 for each integrated function.

The SFB cannot be interrupted from higher-priority program execution levels (for example, OB 40). A process interrupt is not executed, for example, until the SFB in OB 1 has been processed. This increases the interrupt response time on the CPU by the time taken to execute the SFB.

### 2.3 Functions and Properties of the Instance DB

## Data Management

Operator Interface

## Retentivity

Configuring
Retentivity

The instance DB contains the data which are exchanged between the user program and the integrated function.

An operator panel (OP) can be connected to a CPU 312 IFM/CPU 314 IFM without a user program. The SFB does not have to be called, because the operator panel accesses the instance DB direct (requirement with the CPU 314 IFM: If you have parameterized updating at the cycle control point with STEP 7; see Section 3.4).

An integrated function is retentive if, following a power failure, it continues to operate with the status it had immediately before the power failure occurred.

If the integrated function is to be "retentive", you must configure the instance DB as retentive with STEP 7.

The parameters for the CPU 312 IFM/CPU 314 IFM are described in the manual S7-300 Programmable Controller, Installation and Hardware in the section entitled "Retentive Areas". How to work with STEP 7 is described in the Standard Software for $S 7$ and M7, STEP 7 User Manual.

The instance DB contains the states of all input and output parameters of the assigned SFB.

The integrated function accesses the inputs and outputs of the integrated inputs/outputs of the CPU 312 IFM directly. The states of these inputs and outputs are not stored in the instance DB.

The instance DB is updated at the following times:

- On operating mode transitions on the CPU
- At the cycle control point (if you have parameterized updating at the cycle control with STEP 7; see Section 3.4
- When the corresponding SFB is called


### 2.4 How to Activate and Configure the Integrated Functions

## Introduction

## Activation/ <br> Configuration

## "Functions" <br> Register

## Description of Parameters <br> You will find a description of the parameters and their value ranges in: <br> - The S7-300 Programmable Controller, Installation and Hardware Manual for the interrupt inputs

To use an integrated function, you must first activate and then assign the parameters for the integrated function.

You activate and assign the parameters for the integrated function off-line on a programming device or PC with STEP 7. How to work with STEP 7 is described in the Standard Software for S7 and M7, STEP 7 User Manual.

When parameterizing the CPU with STEP 7 in the "Functions" register, activate one of the following integrated functions:

- for CPU 312 IFM:
- Interrupt Inputs
- Counter
- Frequency Meter
- for CPU 314 IFM:
- Interrupt inputs
- Counter
- Parallel counter A/B
- Frequency Meter
- Positioning
- Section 3.4 for the Frequency Meter integrated function
- Section 4.4 for the Counter integrated function
- Section 5.4 for the Counter A/B integrated function
- Section 6.3 for the Positioning integrated function


### 2.5 How to Test the Integrated Functions

Introduction

Test Functions

Using the Test Functions

The CPUs provide test functions with which you can monitor and modify data and variables of the user program.

Table 2-2 contains the test functions you can use for the CPU 312 IFM and CPU 314 IFM.

Table 2-2 Test Functions for CPU 312 IFM and CPU 314 IFM

| Test Functions | Use |
| :--- | :--- |
| Status Variable | Monitor the status of selected process variables (inputs, outputs, <br> bit memories, timers, counters, data) at a defined point in the user <br> program |
| Modify Variable | Assign a value to selected process variables (inputs, outputs, bit <br> memories, timers, counters, data) at a defined point in the user <br> program in order to control the user program. |
| Status Block | Monitor a block during program execution to assist in the elimina- <br> tion of problems that arise during the compilation of the user pro- <br> gram. <br> Status Block presents the status of various elements of the status <br> word, accumulators and registers, in order to indicate which of the <br> operations are active. |

The test functions "Status Variable" and "Modify Variable" are described in the user manual Standard Software for S7 and M7, STEP 7.

You will find a description of the "Status Block" test function in the manual Statement List (STL) for S7-300 and S7-400, Programming or in the manual Ladder Logic (LAD) for S7-300 and S7-400, Programming, depending on which programming language you are using.

### 2.6 How the Integrated Functions Behave on Operating Mode Transitions on the CPU

## Preconditions <br> You have activated and assigned the parameters for the integrated function

Operating Modes with STEP 7.

The behavior of the integrated functions depends directly on the operating mode of the CPU (START, STOP and RUN). Table 2-3 describes the behavior of the integrated functions in the various operating modes of the CPU.

Table 2-3 Operating Mode of the CPU

|  | START | STOP/HOLD | RUN |
| :--- | :--- | :--- | :--- |
| Integrated function | inactive | inactive | active |
| Standard function block (for ex- <br> ample, SFB 30) | callable | not callable | callable <br> Updating the instance DB <br> (if parameterized with <br> STEP 7) and when SFB <br> is called |
| Process interrupts | when SFB is called | No | enabled |
| Inputs of integrated inputs/out- <br> puts | are not evaluated by the <br> integrated function | are not evaluated by the <br> integrated function | are evaluated by the inte- <br> grated function |
| Outputs of integrated inputs/out- <br> puts | are not affected by the in- <br> tegrated function | are not affected by the in- <br> tegrated function | are affected by the inte- <br> grated function |

## Operating Mode Transitions

Figure 2-2 illustrates the operation mode transitions of the CPU and the associated actions of the integrated function.


Figure 2-2 Operating Mode Transitions

## Description of the Actions

The actions of the operating mode transitions are described in Table 2-4.

Table 2-4 Operating Mode Transitions

| Action | Description |
| :---: | :--- |
| (1) | The parameters of the integrated function are checked for completeness and <br> the value range is verified. |
| (2) | Initialization of edge-controlled inputs <br> - <br> The edge-controlled inputs are initialized such that the reaction is trig- <br> gered on the next evaluation of the instance DB with input $=1$. |
| (3) | If an error is detected during the start-up, the CPU switches to STOP mode. |
| (4) | Start integrated function (transition to active state) <br> $\bullet \quad$The integrated function accepts the values from the instance DB and <br> starts. <br> - $\quad$ The outputs are enabled by the operating system. <br> - The inputs are evaluated by the integrated function. |
| (5) | Stop integrated function <br> - The output values are updated in the instance DB. <br> - The edge-controlled inputs are reset in the instance DB. |

## Frequency Meter Integrated Function

Integrated Inputs/ Outputs

Table 3-1 lists the special integrated inputs/outputs of the CPU 312 IFM and CPU 314 IFM for the Frequency Meter integrated function.

Table 3-1 Overview: Integrated Inputs/Outputs for Frequency Meter Integrated Function on CPU 312 IFM and CPU 314 IFM

| CPU 312 IFM | CPU 314 IFM | Function |
| :---: | :---: | :---: |
| I 124.6 | I 126.0 | Measurement digital input |

## Note

The CPU 312 IFM is used for examples in this chapter. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated inputs/outputs (see Table 3-1).

| Section | Contents | Page |
| :---: | :--- | :---: |
| 3.1 | Function Overview | $3-2$ |
| 3.2 | How the Frequency Meter Integrated Function Operates | $3-3$ |
| 3.3 | Function of the Comparator | $3-5$ |
| 3.4 | Assigning Parameters | $3-7$ |
| 3.5 | Connecting the Sensors to the Integrated Inputs/Outputs | $3-10$ |
| 3.6 | System Function Block 30 | $3-12$ |
| 3.7 | Structure of the Instance DB | $3-14$ |
| 3.9 | Calculating the Cycle Time | $3-17$ |
| 3.10 | Example Applications | $3-18$ |

### 3.1 Function Overview

## Introduction

In this section, you will find an overview diagram (block diagram) for the Frequency Meter integrated function. The block diagram contains the main components of the integrated function and all its inputs and outputs.

Sections 3.2 and 3.3 refer to the block diagram. These sections describe the interaction of the main components of the Frequency Meter integrated function and their inputs and outputs.

Purpose of the Integrated Function

The Frequency Meter integrated function enables continuous measurement of a frequency $\leq 10 \mathrm{kHz}$.

Block Diagram Figure 3-1 shows the block diagram for the Frequency Meter integrated function:


Figure 3-1 Block Diagram for Frequency Meter Integrated Function

### 3.2 How the Frequency Meter Integrated Function Operates

Frequency Meter

## Different Measuring Principles

The Frequency Meter calculates the current frequency from the measured signal and the sample time.

The measured signal is connected via the Meter digital input of the integrated CPU inputs/outputs. The Frequency Meter counts the positive edges of the measured signal within a sample time in order to calculate the frequency.

The CPU calculates the frequency according to two different measuring principles:

- Measuring principle 1 is applied with a sample time of $0.1 \mathrm{~s}, 1 \mathrm{~s}$ or 10 s
- Measuring principle 2 is applied with a sample time of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ or 4 ms

The Frequency Meter calculates the frequency according to the following formula:
Frequency $=\frac{\text { Number of positive edges }}{\text { Sample time }}$

The Frequency Meter calculates the frequency by measuring the time interval between two incoming positive edges at the meter's digital input.

## Sample Time

You configure the sample time with STEP 7. You can choose between a sam- ple time of $1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 0.1 \mathrm{~s}, 1 \mathrm{~s}$ or 10 s . The measurement process is restarted immediately after the sample time expires, with the result that the current frequency is always available.

Example The sample time is 1 s .6500 positive edges were counted during one sample period.
Frequency $=\frac{6500}{1 \mathrm{~s}}=6500 \mathrm{~Hz}$

Properties of Measuring Principle 1

The sample times from 0.1 s to 10 s were introduced for the measurement of high frequencies. The higher the frequency, the more accurate the result of the measurement. With high frequencies, this measuring principle is associated with:

- High measurement accuracy
- Low load on the cycle


## Properties of Measuring Principle 2

The sample times from 1 s to 4 s were introduced for the measurement of low frequencies. The lower the frequency, the more accurate the result of the measurement. With low frequencies, this measuring principle is associated with:

- High measurement accuracy
- High-speed response to process events (e.g. process interrupt triggering)
- A high load on the cycle

When the CPU is started or HOLD mode is deactivated, OB 1 is executed and the Frequency Meter integrated function is started simultaneously.

With measuring principle 1 , the 1st valid frequency is calculated after the 1st sample period.

With measuring principle 2 , the 1 st valid frequency is calculated, at the latest, after twice the sample time or according to the formula $2 \times 1 /$ measured frequency (the larger of the two values applies).

With both measuring principles, the frequency is -1 until the valid frequency is calculated.


Figure 3-2 Display of First Valid Frequency Value

The Frequency Meter integrated function is designed for a maximum frequency of 10 kHz .

## Warning

If the current frequency exceeds the frequency limit of 10 kHz :

- Correct operation of the integrated function is no longer assured
- The cycle load is increased
- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog intervenes, the CPU switches to STOP.

### 3.3 Function of the Comparator

Comparator

Upper Limit Comparator

Lower Limit Comparator

The Frequency Meter integrated function has two integrated comparators with which you can monitor adherence to a specific frequency range.

The upper limit comparator intervenes if the frequency FREQ exceeds a defined comparison value U_LIMIT. In this case, status bit STATUS_U at SFB 30 is enabled.

The lower limit comparator intervenes if the frequency FREQ falls below a defined comparison value L_LIMIT. In this case, status bit STATUS_L at SFB 30 is enabled.

You can evaluate the status bits in your user program.
Until the first valid frequency value is displayed, the signal state of the status bits at SFB 30 is 0 .

If the value exceeds the U_LIMIT comparison value or falls below the L_LIMIT comparison value, a corresponding process interrupt is triggered if configured in STEP 7 (sample time 1, 2 or 4 ms and process interrupt activated).

Function of the Comparator

Figure 3-3 illustrates the function of the comparator. The gray areas indicate when a lower or upper limit is exceeded.


Figure 3-3 Function of the Comparator

You can define new comparison values for the upper and lower limits in the input parameters PRES_U_LIMIT and PRES_L_LIMIT at SFB 30. The new comparison values are accepted by the comparator when positive edges occur on the input parameters SET_U_LIMIT or SET_L_LIMIT at SFB 30.
If, after defining a new comparison value for the upper/lower limit, the frequency exceeds or falls below this limit, a process interrupt is triggered (provided you have activated the process interrupt with STEP 7).

### 3.4 Assigning Parameters

## Parameter Assignment with STEP 7

Parameters and their Value Ranges

You assign the parameters for the integrated function with STEP 7. How to work with STEP 7 is described in the manual Standard Software for $S 7$ and M7, STEP 7.

Table 3-2 lists the parameters for the Frequency Meter integrated function.

Table 3-2 "Integrated Inputs/Outputs" Parameter Block

| Parameter | Description | Value Range | Default <br> Setting |
| :--- | :--- | :--- | :--- |
| Number of <br> instance DB | The instance DB contains the data <br> which are exchanged between the inte- <br> grated function and the user program. | 1 to 63 <br> CPU 314 IFM <br> 1 to 127 | 62 |
| Sample time | The sample time is the time interval in <br> which the integrated function calcu- <br> lates a current frequency value. | $0.1 \mathrm{~s} ; 1 \mathrm{~s} ; 10 \mathrm{~s} ;$ <br> $1 \mathrm{~ms} ; 2 \mathrm{~ms} ;$ <br> 4 ms | 1 s |
| Automatic <br> updating at <br> the cycle <br> control <br> point | You determine whether the instance <br> DBs of the integrated function are to <br> be updated at the cycle control point | Activated/ <br> deactivated | Activated |

## Value Falls Below Lower Limit

| Process inter- <br> rupt $^{2}$ | You can set that a process interrupt is <br> triggered if the actual value falls below <br> the comparison value L_LIMIT. | Activated/ <br> deactivated | Deactivated |
| :--- | :--- | :--- | :--- |

## Value Exceeds Upper Limit

| Process inter- <br> rupt $^{2}$ | You can set that a process interrupt is <br> triggered if the actual value exceeds <br> the comparison value U_LIMIT. | Activated/ <br> deactivated | Deactivated |
| :--- | :--- | :--- | :--- |

[^0]
## Measurement Resolution with Sample Times of $0.1 \mathrm{~s}, 1 \mathrm{~s}$ and 10 s

The measurement resolution increases with every increase in the sample time. Table 3-3 illustrates the relationship of the measurement resolution to the configured sample time.

Table 3-3 Measurement Resolution with Sample Times of $0.1 \mathrm{~s} ; 1 \mathrm{~s}$ and 10 s

| Sample <br> Time | Resolution | Example of <br> Positive Edges during <br> 1 Sample Period | Frequency |
| :---: | :--- | :---: | :---: |
|  | The frequency can be calcu- <br> lated in 10 Hz steps | 900 | 9000 Hz |
|  | 1 s | The frequency can be calcu- <br> lated in 1 Hz steps | 901 |
|  | 900 | 9010 Hz |  |
| 10 s | The frequency can be calcu- <br> lated in 0.1 Hz steps | 901 | 901 Hz |
|  |  | 900 | 90 Hz |
|  |  | 901 | 90.1 Hz |

## Disadvantage of a Large Sample Time

Measurement
Accuracy with
Sample Times of
$0.1 \mathrm{~s}, 1 \mathrm{~s}$ and 10 s

The accuracy of measurement depends on the measured frequency and the sample time.

Table 3-4 shows the maximum measurement error at the frequency limit of 10 kHz with the configurable sample times.

Table 3-4 Measurement Accuracy with Sample Times of $0.1 \mathrm{~s} ; 1 \mathrm{~s}$ and 10 s

| Frequency | Sample Time | Maximum Measurement <br> Error in \% of Measured <br> Value |
| :---: | :---: | :---: |
| 10 kHz | 0.1 s | $1.1 \%$ |
| 10 kHz | 1 s | $0.11 \%$ |
| 10 kHz | 10 s | $0.011 \%$ |

Calculation of the Measurement Error with Sample Times of $0.1 \mathrm{~s}, 1 \mathrm{~s}$ and 10 s

You can use the following formula to calculate the maximum measurement error of your measured frequency:
Max. error in \% of meas. val. $=\frac{0.001 \mathrm{~s}+\frac{1}{\text { Frequency in } \mathrm{Hz}}}{\text { Sample time in } \mathrm{s}} \times 100 \%$
Due to the measuring principle, the measurement error increases as the measured frequency decreases.

## Measurement Resolution with Sample Times of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ and 4 ms

## Measurement Accuracy with Sample Times of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ and 4 ms

The internal arithmetical resolution of the time measurement between two positive edges is always the same, i.e. $=1 \mathrm{mHz}$, for a configured sample time of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ or 4 ms .

Please note: Frequencies < 20 mHz cause a frequency value of 0 to be output.

The accuracy of measurement depends on the measured frequency and the sample time. The measurement accuracy increases as the frequency decreases and the sample time increases.
Table 3-5 shows the maximum measurement error at the frequency limit of 10 kHz with the configurable sample times.

Table 3-5 Meas. Accuracy with Sample Times of $1 \mathrm{~ms} ; 2 \mathrm{~ms} \& 4 \mathrm{~ms}$

| Frequency | Sample Time | Maximum Measurement <br> Error in \% of Measured <br> Value |
| :---: | :---: | :---: |
| 10 kHz | 1 ms | $5 \%$ |
| 10 kHz | 2 ms | $2 \%$ |
| 10 kHz | 4 ms | $1 \%$ |

## Calculation of the Measurement Error with Sample Times of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ and 4 ms

Factor in \%

You can use the following formula to calculate the maximum measurement error of your measured frequency:
Max. error $= \pm$ frequency in $\mathrm{Hz} \times$ factor in $\% / 100 \pm 0.001 \mathrm{~Hz}$

The factor used to calculate the measurement error in the above formula depends on the CPU.

The factor cannot exceed a maximum value. In other words, if the formula in the table below yields a factor for your application which is larger than the maximum factor, you must use the maximum factor in the formula in order to calculate the measurement error.

Table 3-6 Factor for Calculating the Max. Measurement Error for IF Frequency Meter

| CPU | Formula for Factor Calculation | Max. Factor for Sample Time of: |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{1 ~ m s}$ | $\mathbf{2 ~ m s}$ | $\mathbf{4 ~ m s}$ |
| CPU 312 IFM | $(0.01+0.0018 \mathrm{~s} \times$ frequency in Hz$) \%$ | $5 \%$ | $2 \%$ | $1 \%$ |
| CPU 314 IFM | $(0.01+0.0012 \mathrm{~s} \times$ frequency in Hz$) \%$ | $3.5 \%$ | $1.5 \%$ | $0.75 \%$ |

### 3.5 Connecting the Sensors to the Integrated Inputs/Outputs

## Introduction

## Terminals

Terminal Connection Model

The CPU 312 IFM is used as a wiring example. The example can be implemented in the same way with the CPU 314 IFM using another integrated input/output (see Table 3-1).

The terminals of the integrated inputs/outputs on the CPU 312 IFM for the Frequency Meter integrated function are listed in Table 3-7.

Table 3-7 Terminals for the Sensors (CPU 312 IFM)

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 8 | I 124.6 | Meter |
| 18 | L+ | Supply voltage |
| 19 | M | Ground |

Figure 3-4 illustrates the connection of the sensor (for example, BERO) to the integrated inputs/outputs of the CPU 312 IFM


Figure 3-4 Sensor Wiring (CPU 312 IFM)

## Shielding

You must use a shielded signal cable to connect the sensor and you must connect the cable shield to ground. Use the shield connecting element for this purpose.

You will find more detailed information on the installation of the cable shield in the manual S7-300 Programmable Controller, Installation and Hardware.

### 3.6 System Function Block 30

SFB 30
The Frequency Meter integrated function is assigned to SFB 30. A graphical illustration of SFB 30 is shown in Figure 3-5.

| Edge-controlled <br> Edge-controlled | SFB 30  <br> EN  <br> ENO  <br> PRES_U_LIMIT FREQ <br> PRES_L_LIMIT U_LIMIT |  |
| :---: | :---: | :---: |
|  |  | - |
|  |  | - |
|  |  | - |
|  | SET_U_LIMIT L_LIMIT | - |
|  | SET_L_LIMIT STATUS_U | - |
|  | STATUS_L |  |

Figure 3-5 Graphical Illustration of SFB 30

Input Parameters In Table 3-8 you will find a description of the input parameters of SFB 30. of SFB 30

Table 3-8 Input Parameters of SFB 30

| Input Parameter | Description |
| :---: | :---: |
| EN | EN is the input parameter for enabling SFB 30. This input parameter causes the SFB to be executed. The input parameter has no effect on the execution of the integrated function. The SFB is executed as long as $\mathrm{EN}=1$. When $\mathrm{EN}=0$, the SFB is not executed. <br> Datatype: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |
| PRES_U_LIMIT | You can use this input parameter to store a new PRES_U_LIMIT comparison value. It is accepted following a positive edge on the input parameter SET_U_LIMIT. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| PRES_L_LIMIT | You can use this input parameter to store a new PRES_L_LIMIT comparison value. It is accepted following a positive edge on the input parameter SET_L_LIMIT. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| SET_U_LIMIT | Following a positive edge, comparison value PRES_U_LIMIT is accepted. The status bit STATUS_U is also set simultaneously in accordance with the new comparison value. <br> Datatype: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |

Table 3-8 Input Parameters of SFB 30, continued

| Input Parameter | Description |
| :--- | :--- |
| SET_L_LIMIT | Following a positive edge, comparison value PRES_L_LIMIT is accepted. The status bit STA- <br> TUS_L is also set simultaneously in accordance with the new comparison value. |
|  | Data type: BOOL Address ID: I, Q, M, <br> L, D |

Output Parameters In Table 3-9 you will find a description of the output parameters of SFB 30. of SFB 30

Table 3-9 Output Parameters of SFB 30

| Output <br> Parameter | Description |
| :---: | :---: |
| ENO | Output parameter ENO indicates whether an error occurred during execution of the SFB. If $\mathrm{ENO}=1$, no error occurred. If $\mathrm{ENO}=0$, the SFB was not executed or an error occurred during execution. <br> Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) <br> L, D |
| FREQ | The measured frequency is output in mHz in this parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from -1 to 10000000 L, D |
| U_LIMIT | The current U_LIMIT comparison value is output in this output parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| L_LIMIT | The current L_LIMIT comparison value is output in this output parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D |
| STATUS_U | The output parameter STATUS_U indicates the position of the frequency relative to the comparison value U_LIMIT: <br> - Frequency FREQ > comparison value U_LIMIT: output parameter STATUS_U enabled <br> - Frequency FREQ $\leq$ comparison value U_LIMIT: output parameter STATUS_U not enabled <br> Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |
| STATUS_L | The output parameter STATUS_L indicates the position of the frequency relative to the comparison value L_LIMIT: <br> - Frequency FREQ $\geq$ comparison value L_LIMIT: output parameter STATUS_L not enabled <br> - Frequency FREQ < comparison value L_LIMIT: output parameter STATUS_L enabled <br> Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |

### 3.7 Structure of the Instance DB

Instance DB of SFB 30

## Length of the

 Instance DBTable 3-10 shows you the structure and the assignment of the instance DB for the Frequency Meter integrated function.

Table 3-10 Instance DB of SFB 30

| Operand | Symbol | Meaning |
| :--- | :--- | :--- |
| DBD 0 | PRES_U_LIMIT | Upper limit comparison value (new) |
| DBD 4 | PRES_L_LIMIT | Lower limit comparison value (new) |
| DBX 8.0 | SET_U_LIMIT | Set upper limit comparison value |
| DBX 8.1 | SET_L_LIMIT | Set lower limit comparison value |
| DBD 10 | FREQ | Frequency |
| DBD 14 | U_LIMIT | Upper limit comparison value (current) |
| DBD 18 | L_LIMIT | Lower limit comparison value (current) |
| DBX 22.0 | STATUS_U | Upper limit status bit |
| DBX 22.1 | STATUS_L | Lower limit status bit |

The data for the Frequency Meter integrated function are 24 bytes in length and begin at address 0 in the instance DB.

### 3.8 Evaluation of Process Interrupts

Introduction
The Frequency Meter integrated function triggers process interrupts on the occurrence of certain events; provided you have configured a sample time of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ or 4 ms with STEP 7 and have activated the process interrupts.

Configurable
Events
The events which can result in a process interrupt are listed in Table 3-11 together with the parameters you must assign in STEP 7.

Table 3-11 Events which can Cause a Process Interrupt

| Process Interrupt on | Description | Configuration |
| :--- | :--- | :--- |
| Actual value falling below <br> comparison value lower limit | A process interrupt is triggered if the actual value <br> falls below the comparison value lower limit | Falls below comparison value <br> lower limit: process interrupt ac- <br> tivated |
| Actual value exceeding com- <br> parison value upper limit | A process interrupt is triggered if the actual value <br> exceeds the comparison value upper limit | Exceeds comparison value up- <br> per limit: process interrupt acti- <br> vated |


| Process |  |
| :--- | :--- |
| Interrupt OB | When a process interrupt occurs, the process interrupt OB (OB 40) is called <br> up. The event which has invoked OB 40 is stored in the start information (de- <br> claration section) of the OB 40. |
| Start Information Table 3-12 shows the relevant temporary (TEMP) variables of OB 40 for the <br> of OB 40 for Inte- <br> grated Function <br> Frequency Meter Integrated Function of the CPU 312 IFM/314 IFM. You will <br> find a description of OB 40 in the System and Standard Functions Reference <br> Manual. . |  |

Table 3-12 Start Information of OB 40 for Frequency Meter Integrated Function

| Variable | Data Type | Description |  |
| :--- | :--- | :--- | :--- |
| OB40_MDL_ADDR | WORD | B\#16\#7C | Display in local data word 6: <br> $\bullet$ <br> Address of module which triggered interrupt (in this case <br> the CPU) |
| OB40_POINT_ADDR | DWORD | see Figure 3-6 | Display in local data double word 8: <br> $\bullet \quad$ Integrated function which triggered interrupt <br> $\bullet \quad$ Event which triggered interrupt |

## Display of the From the variable OB40_POINT_ADDR you can read which Integrated Event which Triggered the Interrupt <br> Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8 .



Figure 3-6 Start Information of OB 40: Which Event Triggered Interrupt (Frequency Meter)?

## Evaluation in User Program

The evaluation of process interrupts in the user program is described in the Programming Manual System Software for S7-300/400, Program Design.

### 3.9 Calculating the Cycle Time

Introduction

Calculation

Instance DB
Updating Time

Increased Cycle Time

The calculation of the cycle time for the CPUs is described in detail in the manual S7-300 Programmable Controller, Installation and Hardware. The following paragraphs describe the times which must be included in the calculation when the Frequency Meter integrated function is running.

You can calculate the cycle time with the following formula:
Cycle time $=\mathbf{t}_{\mathbf{1}}+\mathbf{t}_{\mathbf{2}}+\mathbf{t}_{\mathbf{3}}+\mathbf{t}_{\mathbf{4}}$
$\mathrm{t}_{1}=$ Process image transfer time (process output image and process input image) ${ }^{1}$
$\mathrm{t}_{2}=$ Operating system runtime including load generated by an executing integrated function ${ }^{1}$
$t_{3}=$ User program execution time ${ }^{2}$ including the SFB runtime when an SFB call is made in the program cycle ${ }^{3}$
$t_{4}=$ Updating time of the instance DB at the cycle control point (if updating parameterized with STEP 7)

The runtime of SFB 30 is typically $220 \mu \mathrm{~s}$.

The updating time of the instance DB at the cycle control point is $100 \mu \mathrm{~s}$ for the Frequency Meter integrated function.

Please note that the cycle time can be increased due to:

- Time-controlled execution
- Interrupt handling
- Diagnostics and error handling

The following applies for the IF frequency meters: Response time $=$ Process interrupt response time. The process interrupt response time is the period that elapses between violation of the current comparison value to the processing of the OB 40 . With the parameterited measuring time of 1,2 or 4 ms , the respone time is calculated as follow:

- Process interrupt response time when violating the upper comparison value $<1 \mathrm{~ms}+$ measuring time
- Process interrupt response time when violating the lower comparison value $>1 \mathrm{~ms}+$ measuring time $+1 /$ lower limit frequency

[^1]
### 3.10 Example Applications

In this section, you will find two example applications for the Frequency Meter integrated function. The first example contains a routine for monitoring the speed of a drive within a defined speed range.

The second example is an extension of the first. The user can change the speed range; two lamps are used to indicate which speed range is set.

## Note

The CPU 312 IFM is used for the application examples. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated inputs/outputs (see Table 3-1).

In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 3.10 .1 | Speed Monitoring within a Fixed Speed Range | $3-19$ |
| 3.10 .2 | Speed Monitoring within Two Speed Ranges | $3-26$ |

### 3.10.1 Speed Monitoring within a Fixed Speed Range

Task
A shaft rotates at an approximately constant speed. The speed of the drive is measured using a light barrier, and the Frequency Meter checks that the speed is within a defined range. If the permissible speed range is exceeded ( $960 \leq \mathrm{n} \leq 1080 \mathrm{rpm}$ ), a reaction is triggered by the user program:

- Speed above permissible level: red lamp lights up
- Speed below permissible level: yellow lamp lights up

Wiring
The technology and wiring of the speed monitoring system are shown in Figure 3-7.


Figure 3-7 Speed Monitoring of a Shaft (1)

## Design of the Scanning Disk

In Figure 3-7, the scanning disk has four elongated holes of equal length, positioned symmetrically on the disk. The actual frequency is therefore a quarter of the measured frequency.

## Why Elongated Holes?

The light slots are measured by the light barrier and transmitted as a measured signal to the Meter digital input.

The measured signal is composed of 1 pulse time +1 pulse interval. It is only detected reliably by the Frequency Meter if the pulse time $\geq 50 \mu$ s and the pulse interval $\geq 50 \mu$ s (see Appendix A).

As the current frequency approaches the frequency limit of 10 kHz , the following ratio must be maintained for the fulfilment of the above condition:

Pulse time : pulse interval =1:1
In our example:

- 1 pulse time $=1$ light slot
- 1 pulse interval $=1$ area without a light slot

You therefore attain the optimum pulse time/pulse interval ratio through the symmetrical division of the light slots on the scanning disk. The following applies:

Length of a light slot $=$ length of an area without a light slot

Function of the Inputs and Outputs

Table 3-13 lists the functions of the inputs and outputs for the example.

Table 3-13 Wiring of the Inputs and Outputs (1)

| Terminal | Input/ Out- <br> put | Function in Example |
| :---: | :---: | :--- |
| 8 | I 124.6 | The positive edges of the signal are measured. <br> 1 light slot on the scanning disk corresponds to 1 posi- <br> tive edge. |
| 12 | Q 124.0 | The output is enabled when the upper limit comparison <br> value is exceeded. <br> The red lamp lights up when the speed is > 1080 rpm. |
| 13 | Q 124.1 | The output is enabled when the value falls below the <br> lower limit comparison value. <br> The yellow lamp lights up when the speed is < 960 rpm. <br> This is the case during start-up, for example, while the <br> shaft drive has not yet reached its permissible speed. |
| 18 | L+ | 24 VDC supply voltage <br> 19 |
| M | Reference potential of the supply voltage |  |

Sequence Diagram The sequence diagram in Figure 3-8 illustrates the relationship between the speed and the digital outputs.


Figure 3-8 Sequence Diagram for Example 1

Parameter Assignment with STEP 7

You set the parameters for the CPU as follows with STEP 7:

Table 3-14 Parameters for the Frequency Meter Example

| Parameter | Input | Description |
| :--- | :---: | :--- |
| No. of instance DB | 62 | Instance DB for the example (default <br> value) |
| Sample time | 4 s | Time interval in which the IF calculates the <br> current frequency value |
| Automatic updating at <br> the cycle control point ${ }^{1}$ | Activated | The instance DB is updated at each cycle <br> control point. |

[^2]
## Calculation of the Upper and Lower Limit Comparison Values

Table 3-15 illustrates the calculation of the comparison values for the example.

Further on in the example, you will find out how to pass the comparison values to SFB 30 from the user program.

Table 3-15 Determination of the Comparison Values

| Comparison <br> Value | Speed | Frequency at a Configured Sam- <br> ple Time of 10 s | Upper/Lower Limit Comparison Value for <br> SFB 30 |
| :--- | :--- | :--- | :--- |
| Upper limit | 1080 rpm | $\frac{1080}{60}=18 \frac{1}{\mathrm{~s}}=18 \mathrm{~Hz}$ | $18 \mathrm{~Hz} \times 4$ (light slots) $=72 \mathrm{~Hz}$ <br> Input parameter PRES_U_LIMIT for SFB 30 <br> (in mHz): 72000 |
| Lower limit | 960 rpm | $\frac{960}{60}=16 \frac{1}{\mathrm{~s}}=16 \mathrm{~Hz}$ | $16 \mathrm{~Hz} \times 4$ (light slots) $=64 \mathrm{~Hz}$ <br> Input parameter PRES_L_LIMIT for SFB 30 <br> (in mHz): 64000 |

## Initialization of SFB 30

SFB 30 is called at startup from OB 100 and initialized once. The comparison values are transferred to SFB 30 in MHz .

SFB 30 is illustrated in Figure 3-9 with the initialized input parameters.


Figure 3-9 Initialization of SFB 30 at Start-Up (1)

## Cyclic Calling of SFB 30

SFB 30 is called cyclically in OB 1 . The assignment of SFB 30 is illustrated in Figure 3-10.


Figure 3-10Initialization of SFB 30 in the Cyclic Program (1)

If the upper or lower limit of the speed range is exceeded, the corresponding status bit of SFB 30 is enabled.

When status bit STATUS_U (upper limit exceeded) is enabled, the red lamp is actuated with output 124.0.

When status bit STATUS_L (lower limit exceeded) is enabled, the yellow lamp is enabled with output 124.1.
As long as no valid frequency is available, the signal state of the status bits is 0 .

## Output Parameter FREQ

The output parameter FREQ outputs the actual measured frequency. You can evaluate the frequency in the user program. Because of the four light slots, you must divide the frequency by four to obtain the actual frequency and thus the speed of the shaft (implemented in the following user program).

## Instance DB of SFB 30

User Program

In the example, the data are stored in instance DB 62.

In the following section, you will find the user program for the example. The program was created with the Statement List Editor in STEP 7.

Global Data Used
Table 3-16 shows the global data used in the user program.

Table 3-16 Global Data for Example 1

| Global Data | Meaning |
| :--- | :--- |
| MD 4 | Comparison value (new) |
| MD 8 | Current measured frequency |
| MD 12 | Actual shaft speed in $1 / \mathrm{min}$ |
| M 24.0 | Enable SFB 30 execution |
| M 24.1 | Store BR bit (= output parameter ENO of SFB 30) |
| A 124.0 | Actuate red lamp |
| A 124.1 | Actuate yellow lamp |

OB 100 Statement Section

You enter the following statement list (STL) user program in the statement section of OB 100:

| STL (OB | 100) |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network |  |  |  |
|  | L | L\#64000 | Define comparison value PRES_L_LIMIT in |
|  | T | MD 4 | MD 4 (monitoring possible with STATUS VAR) |
|  | SET |  | Enable SFB 30 execution |
|  | = | M 24.0 |  |
|  | A | M 24.0 | If M $24.0=1$, i.e. $E N=1$ at $\operatorname{SFB} 30$, SFB is executed; |
|  | JNB | m01 | If RLO $=0$, jump to m01 |
|  | CALL | SFB 30, DB 62 | Call SFB 30 with instance DB |
|  | PRES_U_LIMIT: | = L\#72000 | Define comparison value PRES_U_LIMIT |
|  | PRES_L_LIMIT: | = MD 4 | Assign to MD 4 |
|  | SET_U_LIMIT: | = FALSE | SET_U_LIMIT $=0$, to generate pos. edge in OB 1 |
|  | SET_L_LIMIT: | $=$ FALSE | SET_L_LIMIT $=0$, to generate pos. edge in $O B 1$ |
|  | FREQ: | = |  |
|  | U_LIMIT: | = |  |
|  | L_LIMIT: | = |  |
|  | STATUS_U: | = |  |
|  | STATUS_L: | = |  |
| m01: | A | BR | Query BR bit (= ENO at SFB 30) for error evaluation |
|  | $=$ | M 24.1 |  |

OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section

| STL (OB |  |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network | 1 |  |  |
|  | . |  | Individual user program |
|  | ${ }^{*}$ | M 24.1 | If M 24 - $=1$ i $\mathrm{EN}=1$ at SEB 30 |
|  |  | M 24.1 | SFB is executed; |
|  | JNB | m01 | If RLO $=0$, jump to m01 |
|  | CALL | SFB 30, DB 62 | Call SFB 30 with instance DB |
|  | PRES_U_LIMIT: |  |  |
|  | PRES_L_LIMIT : | $=$ |  |
|  | SET_U_LIMIT: | $=$ TRUE | Set comparison values with pos. edge |
|  | SET_L_LIMIT: | $=$ TRUE | Current measured frequency is stored in |
|  | FREQ: | = MD 8 | MD 8 d |
|  | U_LIMIT : | $=$ |  |
|  | L_LIMIT: | = |  |
|  | STATUS_U: | = A 124.0 | If Q $124.0=1$, red lamp lights up |
|  | STATUS_L: | $=\mathrm{A} 124.1$ | If $2124.1=1$, yellow lamp lights up |
| m01 : | A | BR | Query BR bit (= ENO at SFB 30) for er- |
|  | $=$ | M 24.1 | ror evaluation |
|  | L MD 8 |  | End if valid speed value has not been read |
|  | L L\#-1 |  |  |
|  | ==D |  |  |
|  | BEC |  |  |
|  | L | MD 8 | Convert measured frequency to actual |
|  | L | 4000 | shaft speed |
|  | /D |  |  |
|  | L | L\# 60 |  |
|  | *D |  |  |
|  | T | MD 12 | Speed is stored in MD 12 in decimal |
|  |  |  | format in $1 / \mathrm{min}$. |

### 3.10.2 Speed Monitoring within Two Speed Ranges

Introduction

Task

The following example is an extension of the example in Sectior 3.10.1 All functions which are identical in the two examples are therefore listed in Section 3.10.1 The following text contains references to the appropriate points in Section 3.10.1.

A shaft rotates at an approximately constant speed. The speed of the drive can be set at two levels. It is measured by a light barrier and monitored by the Frequency Meter integrated function. The user can switch between the two speed ranges with a pushbutton switch. When the CPU is switched on, the speed range is set to setting 1 .
Permissible speed range 1: $\quad 960 \leq \mathrm{n} \leq 1080 \mathrm{rpm}$
Permissible speed range 2: $\quad 1470 \leq \mathrm{n} \leq 1520 \mathrm{rpm}$
When the speed range is violated, a reaction is triggered by the user program:

- Speed above permissible range 1: red lamp 1 lights up
- Speed below permissible range 1 : yellow lamp 1 lights up
- Speed above permissible range 2: red lamp 2 lights up
- Speed below permissible range 2: yellow lamp 2 lights up

Wiring
The technology and wiring of the speed monitoring system are shown in Figure 3-11.


Figure 3-11 Speed Monitoring of a Shaft (2)

Function of the Inputs and Outputs

Table 3-17 lists the functions of the inputs and outputs for the example.

Table 3-17 Wiring of the Inputs and Outputs (2)

| Terminal | Input/ <br> Output | Function in Example |
| :---: | :---: | :--- |
| 8 | I 124.6 | The positive edges of the signal are measured. <br> 1 light slot on the scanning disk corresponds to 1 positive <br> edge. |
| 9 | I 124.7 | The permissible speed range is changed from 1 to 2, or <br> vice-versa, by pressing the pushbutton. |
| 12 | Q 124.0 | The output is enabled when the upper limit comparison <br> value of speed range 1 is exceeded. <br> Red lamp 1 lights up when the speed is > 1080 rpm. |
| 13 | Q 124.1 | The output is enabled when the value falls below the lower <br> limit comparison value of speed range 1. <br> Yellow lamp 1 lights up when the speed is < 960 rpm. |

Tabelle 3-17 Wiring of the Inputs and Outputs (2), Continued

| Terminal | Input/ <br> Output | Function in Example |
| :---: | :---: | :--- |
| 14 | Q 124.2 | The output is enabled when the upper limit comparison <br> value of speed range 2 is exceeded. <br> Red lamp 2 lights up when the speed is > 1520 rpm. |
| 15 | Q 124.3 | The output is enabled when the value falls below the lower <br> limit comparison value of speed range 2. <br> Yellow lamp 2 lights up when the speed is < 1470 rpm. |
| 18 | L+ | 24 VDC supply voltage |
| 19 | M | Reference potential of the supply voltage |

Sequence Diagram for Speed Range 2

The sequence diagram in Figure 3-12 illustrates the relationship between speed range 2 and the associated digital outputs. You will find the sequence diagram for speed range 1 in Section 3.10.1.


Figure 3-12 Sequence Diagram for Example 2

Parameter Assign- $\quad$ You set the parameters for the CPU with STEP 7 as listed in Section 3.10.1. ment with STEP 7

## Calculation of the Upper and Lower Limit Comparison Values

Table 3-18 illustrates the calculation of the comparison values for speed range 2. You will find the calculation of the comparison values for speed range 1 in Section 3.10.1.

Further on in the example, you will find out how to pass the comparison values to SFB 30 from the user program.

Table 3-18 Determination of the Comparison Values for Speed Range 2

| Comparison <br> Value | Speed | Frequency at a Configured Sample <br> Time of 10 s | Upper/Lower Limit Comparison Value <br> for SFB 30 |
| :--- | :--- | :--- | :--- |
| Upper limit | 1520 rpm | $\frac{1520}{60} \approx 25.3 \frac{1}{\mathrm{~s}} \approx 25.3 \mathrm{~Hz}$ | $25.3 \mathrm{~Hz} \times 4$ (light slots) $\approx 101 \mathrm{~Hz}$ <br> Input parameter PRES_U_LIMIT for <br> SFB 30 (in mHz): 101000 |
| Lower limit | 1470 rpm | $\frac{1470}{60}=24.5 \frac{1}{\mathrm{~s}}=24.5 \mathrm{~Hz}$ | $24.5 \mathrm{~Hz} \times 4$ (light slots) $=98 \mathrm{~Hz}$ <br> Input parameter PRES_L_LIMIT for <br> SFB 30 (in mHz): 98000 |

Initialization of SFB 30

SFB 30 is called from OB 100 twice on start-up and initialized. The comparison values for speed range 1 are transferred to SFB 30 in MHz.
Figure 3-13 shows SFB 30 (2nd call in OB 100) with the initialized input parameters.


Figure 3-13 Initialization of SFB 30 on Start-Up (2)

## Cyclic Calling of SFB 30

SFB 30 is called cyclically in OB 1 . The new comparison values can be passed to SFB 30 in mHz .

Figure 3-14 shows SFB 30 with the input and output parameters.
Pressing of the momentary-contact switch (I 124.7) generates edges at the input parameters SET_U_LIMIT and SET_L_LIMIT. As soon as the edges occur, the comparison values for speed range 2, for example, are accepted by the SFB 30.


Figure 3-14 Initialization of SFB 30 in the Cyclic Program (2)

When the pushbutton (I 124.7) is pressed again, the comparison values for speed range 1 are accepted by SFB 30 .

If the upper or lower limit of the speed range is exceeded, the corresponding status bit of SFB 30 is enabled.

Speed range 1:

- When status bit STATUS_U (upper limit exceeded) is enabled, red lamp 1 is actuated with output 124.0.
- When status bit STATUS_L (lower limit exceeded) is enabled, yellow lamp 1 is enabled with output 124.1.

Speed range 2:

- When status bit STATUS_U (upper limit exceeded) is enabled, red lamp 2 is actuated with output 124.2.
- When status bit STATUS_L (lower limit exceeded) is enabled, yellow lamp 2 is enabled with output 124.3.

As long as no valid frequency is available, the signal state of the status bits is 0 .

## Output Parameter FREQ

## Instance DB of <br> SFB 30

## User Program

The output parameter FREQ outputs the actual measured frequency. You can evaluate the frequency in the user program. Because of the four light slots, you must divide the frequency by four to obtain the actual frequency and thus the speed of the shaft (implemented in the following user program).

In the example, the data are stored in instance DB 62.

In the following section you will find the user program for the example. The program was created with the Statement List Editor in STEP 7.

## Global Data Used

Table 3-19 shows the global data used in the user program.

Table 3-19 Global Data for Example 2

| Global Data | Meaning |
| :--- | :--- |
| MD 8 | Current measured frequency |
| MD 20 | Actual shaft speed in 1/min |
| MD 12 | Current comparison value upper limit |
| MD 16 | Current comparison value lower limit |
| M 24.0 | Enable SFB 30 execution |
| M 24.1 | Store BR bit (= output parameter ENO of SFB 30) |
| M 99.0 | Auxiliary memory bit |
| M 99.1 | Edge memory bit |
| M 100.0 $=1$ | Speed range 1 |
| M 100.0 $=0$ | Speed range 2 |
| M 100.1 | STATUS_U |
| M 100.2 | STATUS_L |
| Q 124.0 | Actuate red lamp 1 |
| Q 124.1 | Actuate red lamp 2 |
| Q 124.2 | Actuate yellow lamp 1 |
| Q 124.3 | Actuate yellow lamp 2 |
| I 124.7 | Pushbutton for switchover of speed range |

OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section


OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section


| STL (OB 1, Continued) |  |  |  | Explanation |
| :---: | :---: | :---: | :---: | :---: |
| M001 : | A | BR |  |  |
|  | = | M | 24.1 | Indicates whether SFB call correctly executed |
|  | A | M | 100.0 | If speed range 1 |
|  | A | M | 100.1 | and upper limit exceeded, |
|  | = | $Q$ | 124.0 | then red lamp 1 on |
|  | A | M | 100.0 | If speed range 1 |
|  | A | M | 100.2 | and lower limit exceeded, |
|  | = | Q | 124.1 | then yellow lamp 1 on |
|  | AN | M | 100.0 | If speed range 2 |
|  | A | M | 100.1 | and upper limit exceeded, |
|  | = | $Q$ | 124.2 | then red lamp 2 on |
|  | AN | M | 100.0 | If speed range 2 |
|  | A | M | 100.2 | and lower limit exceeded, |
|  | = | 2 | 124.3 | then yellow lamp 2 on |
|  | L | MD | 8 | End if valid speed value not yet read |
|  | L | L\# |  |  |
|  | = $=$ D |  |  |  |
|  | BEC |  |  |  |
|  | L | MD | 8 | Convert indicated frequency to current speed |
|  | L | 400 |  |  |
|  | /D |  |  |  |
|  | L | 60 |  |  |
|  | *D |  |  | Indicate speed [1/min.] |
|  | T | MD | 20 |  |

## Counter Integrated Function

Integrated Inputs/Outputs

Table 4-1 lists the special integrated inputs/outputs of the CPU 312 IFM and CPU 314 IFM for the Counter integrated function.

Table 4-1 Overview: Integrated Inputs/Outputs for Counter Integrated Function on CPU 312 IFM and CPU 314 IFM

| CPU 312 IFM | CPU 314 IFM | Function |
| :---: | :---: | :--- |
| I 124.6 | I 126.0 | Digital input up |
| I 124.7 | I 126.1 | Digital input down |
| I 125.0 | I 126.2 | Digital input direction |
| I 125.1 | I 126.3 | Digital input hardware start/stop |
| Q 124.0 | Q 124.0 | Digital output A |
| Q 124.1 | Q 124.1 | Digital output B |

## Note

The CPU 312 IFM is used for examples in this chapter. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated input/outputs (see Table 4-1).

| Section | Contents | Page |
| :---: | :--- | :---: |
| 4.1 | Function Overview | $4-2$ |
| 4.2 | How the Counter Operates | $4-3$ |
| 4.3 | Function of a Comparator | $4-5$ |
| 4.4 | Assigning Parameters | $4-8$ |
| 4.5 | Wiring | $4-10$ |
| 4.6 | System Function Block 29 | $4-16$ |
| 4.7 | Structure of the Instance DB | $4-19$ |
| 4.8 | Evaluation of Process Interrupts | $4-20$ |
| 4.9 | Calculating the Cycle Time and Response Times | $4-22$ |
| 4.10 | Example Applications | $4-24$ |

### 4.1 Function Overview

In this section, you will find an overview diagram (block diagram) for the Counter integrated function. The block diagram contains the main components of the integrated function and all its inputs and outputs.

Sections 4.2 and 4.3 refer to the block diagram. These sections describe the interaction of the main components of the Counter integrated function and their inputs and outputs.

## Purpose of the Integrated Function

The Counter integrated function enables the measurement of counting pulses up to a frequency of 10 kHz . The Counter integrated function can count up and down.

Block Diagram Figure 4-1 shows the block diagram for the Counter integrated function.

Figure 4-1 Block Diagram for Counter Integrated Function

### 4.2 How the Counter Operates

Counter

Actual Value of the Counter

Function of the Counter

The counter calculates the actual value of the counter from the counting pulses (up and down).

The counting pulses are measured via two digital inputs on the CPU: Up digital input and Down digital input.

You use $\operatorname{STEP} 7$ to configure whether the digital inputs are evaluated and, if so, whether positive or negative edges are evaluated.

The counter calculates the actual value according to the following formula:
Actual value $=$ no. of edges on Up DI - no. of edges on Down DI

Figure 4-2 shows an example to illustrate how the actual value of the counter is changed by the counting pulses at the two digital inputs. The positive edges are evaluated on the Up digital input and the negative edges are evaluated on the Down digital input.


Figure 4-2 Counting Pulses and Actual Value of the Counter

## Start/Stop Counter You can start or stop the Counter integrated function in one of the following ways:

- From the integrated inputs/outputs: HW_Start/Stop digital input
- From the user program: input parameter EN_COUNT at SFB 29

The digital input and the input parameter are ANDed. This means that the Up and Down digital inputs are only evaluated when both are enabled.

## Define Start Value for Counter

## Change Counting Direction

## Exceeded



You can define the start value at which the counter begins counting with input parameter PRES_COUNT at SFB 29. The start value is accepted by the counter:

- On a positive edge on input parameter SET_COUNT of SFB 29
- On the occurrence of a counter event, for example, comparison value of the counter reached from below (parameterized with STEP 7).

You can change the counting direction of the Up and Down digital inputs with the Direction digital input. While the signal status of the Direction digital input is 0 , the Up digital input counts down and the Down digital input counts up.

The Counter integrated function counts pulses up to a frequency of 10 kHz .

## Warning

If the current frequency exceeds the frequency limit of 10 kHz :

- Correct operation of the integrated function is no longer assured
- The cycle load is increased
- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog responds, the CPU switches to STOP.

### 4.3 Function of a Comparator

Comparator

Response of the Comparator to Events

The Counter integrated function has two integrated comparators. A comparator compares the actual value of the counter with a defined comparison value and triggers a reaction on the occurrence of a configured event.

You can configure events for any comparator.
Events to which comparator A reacts:

- The actual value of the counter reaches the comparison value from below, that is the actual value changes from COMP_A-1 (COMP_A minus 1) to COMP_A.
- The actual value of the counter falls below the comparison value, that is the actual value changes from COMP_A to COMP_A-1.

Events to which comparator B reacts:
Comparator B reacts to the same events as comparator A . The only difference is that another comparison value (COMP_B) is assigned to comparator B.

## Example

Figure 4-3 shows an example of all possible events to which the comparators can react. The following values are defined:

- Comparison value COMP_A $=350$
- Comparison value COMP_B $=100$

If the actual value of the counter changes from 349 to 350 or from 350 to 349 due to a counting pulse, a reaction is triggered by comparator A .

If the actual value of the counter changes from 99 to 100 or from 100 to 99 due to a counting pulse, a reaction is triggered by comparator $B$.


Figure 4-3 Events to which a Comparator Reacts

| Configurable Reactions | The following reactions can be triggered when the actual value reaches or falls below the comparison value: <br> - Set/reset digital output A or B <br> - Trigger a process interrupt <br> - Reset the counter <br> - Set comparator A or B <br> You configure the reactions with STEP 7. <br> You will find an overview of the possible parameters and their value ranges in Section 4.4 . |
| :---: | :---: |
| Configure Digital Outputs | You can configure the following properties for digital outputs A and B with STEP 7: <br> - On: the digital output is set <br> - Off: the digital output is reset <br> - Unaffected: the state of the digital output remains the same |
| Enable Digital Outputs | Input parameter EN_DO at SFB 29 is used to enable the digital outputs for the integrated function. Following the enable, the reactions of comparators A and $B$ are transmitted directly to the automation process via the integrated inputs/outputs. <br> If input parameter EN_DO is continuously set to " 0 ", you can use the digital outputs as standard digital outputs. |
| Behavior of the Status Bits | Status bit STATUS_A or STATUS_B is set at SFB 29 if: <br> The actual value of the counter COUNT $\geq$ comparison value COMP_A (B) <br> You can evaluate the status bits in your user program. |

## Example

In Figure 4-4 you can see the reactions of digital output A and status bit STATUS_A when the actual value reaches and falls below comparison value COMP_A. The following parameters were assigned with STEP 7:

- Comparison value reached from below: Digital output A = on
- Value falls below comparison value: Digital output A = unchanged

You can reset the outputs used by the integrated function from the user program, for example, in order to reset digital output A.


Figure 4-4 Example: Trigger Reactions

Define New Com- You can define new comparison values with input parameters parison Values PRES_COMP_A and PRES_COMP_B at SFB 29.

The new comparison values are accepted by the comparator:

- On a positive edge on the input parameters SET_COMP_A or SET_COMP_B at SFB 29
- On a counter event ${ }^{1}$ with parameterized response.

1 Counter event means the actual value of the counter reaches or exits a comparison value and the relevant response has been parameterized with STEP 7 .

### 4.4 Assigning Parameters

## Parameter <br> Assignment with STEP 7

## Parameters and their Value Ranges


#### Abstract

You assign the parameters for the integrated function with STEP 7. How to work with STEP 7 is described in the manual Standard Software for S7 and M7, STEP 7.


Table 4-2 lists the parameters for the Counter integrated function.

Table 4-2 "Integrated Inputs/Outputs" Parameter Block

| Parameter | Description | Value Range | Default Setting |
| :---: | :---: | :---: | :---: |
| Counter input: Up | You can set positive or negative edge evaluation on the Up digital input. If you select "deactivated", no counting pulses are evaluated. You can then use the associated digital input as a standard digital input. | Deactivated <br> Positive edge <br> Negative edge | Positive edge |
| Counter input: Down | You can set positive or negative edge evaluation on the Down digital input. If you select "deactivated", no counting pulses are evaluated. You can then use the associated digital input as a standard digital input. |  | Positive edge |
| Number of the instance DB | The instance DB contains the data exchanged between the integrated function and the user program. | 1 to 63 CPU 314 IFM: 1 to 127 | 63 |
| Automatic updating at the cycle control point ${ }^{1}$ | You determine whether the instance DBs of the integrated function are to be updated at the cycle control point. | Activated/ deactivated | Activated |
| Comparison value reached from below (from COMP_A-1 to COMP_A) |  |  |  |
| Digital output A | You can set the reaction of digital output A when the actual value reaches the comparison value from below. | Unaffected <br> On <br> Off | Unaffected |
| Process interrupt | You can specify that a process interrupt is to be triggered when the actual value reaches the comparison value from below. | Activated/ Deactivated | Deactivated |
| Reset counter | You can specify that the counter is reset when the actual value reaches the comparison value from below. | Activated/ Deactivated | Deactivated |
| Set comparator A | You can specify that comparator A is set when the actual value reaches the comparison value from below. | Activated/ Deactivated | Deactivated |

[^3]Table 4-2 "Integrated Inputs/Outputs" Parameter Block, Continued

| Parameter | Description | Value Range | Default <br> Setting |
| :--- | :--- | :--- | :--- |
| Value falls below comparison value (from COMP_A to COMP_A-1) | Unaffected |  |  |
| Digital output A | You can specify the reaction of digital output A when the actual <br> value falls below the comparison value. | Unaffected <br> On <br> Off | Deactivated |
| Process interrupt | You can specify that a process interrupt is triggered when the <br> actual value falls below the comparison value. | Activated/ <br> Deactivated | Deactivated |
| Reset counter | You can specify that the counter is reset when the actual value <br> falls below the comparison value. | Activated/ <br> Deactivated | Deactivated |
| Set comparator A | You can specify that comparator A is set when the actual value <br> falls below the comparison value. | Activated/ <br> Deactivated |  |
| Comparison value reached from below (from COMP_B-1 to COMP_B) <br> (see comparison value from COMP_A-1 to COMP_A) |  |  |  |
| Value falls below comparison value (from COMP_B to COMP_B-1) <br> (see comparison value from COMP_A to COMP_A-1) |  |  |  |

### 4.5 Wiring

## In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 4.5 .1 | Connecting Sensors to the Integrated Inputs/Outputs | $4-11$ |
| 4.5 .2 | Connecting Actuators to the Integrated Inputs/Outputs | $4-14$ |

### 4.5.1 Connecting Sensors to the Integrated Inputs/Outputs

Introduction

## Function of the Digital Inputs

## Hardware Start/ Stop Digital Input

The CPU 312 IFM is used as a wiring example. The example can be implemented in the same way with the CPU 314 IFM using other integrated inputs/ outputs (see Table 4-1).

The sensors are connected to the Up and Down digital inputs.
The Counter integrated function can be started and stopped via the Hardware Start/Stop digital input.

The up/down counting direction on the digital inputs can be changed with the Direction digital input.

The Hardware Start/Stop digital input is ANDed with input parameter EN_COUNT of SFB 29 (see Section 4.6).

If you do not connect any switch to the Hardware Start/Stop digital input, you must supply a permanent voltage of 24 V to the digital input. Only then are the counting pulses evaluated on the Up/Down digital inputs. You start/ stop the counter with input parameter EN_COUNT of SFB 29.

Change Counting When you apply a voltage of 24 V to the Direction digital input, the counting Direction direction on the Up/Down digital inputs is reversed.

Precondition: signal states of Hardware Start/Stop digital input and input parameter EN_COUNT of SFB 29 are 1.
Table 4-3 illustrates the function of the Direction digital input.

Table 4-3 Function of the Direction Digital Input

| Direction Digital Input | Counting Direction |
| :---: | :---: |
| 24 V applied | - Up digital input counts up and <br> - Down digital input counts down |
| 24 V not applied | - Up digital input counts down and <br> - Down digital input counts up |

Time Limits

Terminals
The terminals of the integrated inputs/outputs on the CPU 312 IFM for the Counter integrated function are listed in Table 4-4.

Table 4-4 Terminals for the Sensors

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 8 | I 124.6 | Up |
| 9 | I 124.7 | Down |
| 10 | I 125.0 | Direction |
| 11 | I 125.1 | Hardware Start/Stop |
| 18 | L+ | Supply voltage |
| 19 | M | Ground |

Terminal
Connection Model

Figure 4-6 illustrates the connection of the sensors (for example, BERO proximity switches 1 and 2 ) to the integrated inputs/outputs.


Figure 4-6 Sensor Wiring

You must use shielded signal conductors to connect the sensors and you must connect the conductor shields to ground. Use the shield connecting element for this purpose.
You will find more detailed information on the installation of the conductor shield in the manual S7-300 Programmable Controller, Installation and Hardware.

### 4.5.2 Connecting Actuators to the Integrated Inputs/Outputs

## Introduction

Function of the Digital Outputs

## Enable Digital

 OutputsThe CPU 312 IFM is used as a wiring example. The example can be implemented in the same way with the CPU 314 IFM using other integrated inputs/ outputs (see Table 4-1).

Digital outputs A and B are available for connecting actuators to the integrated inputs/outputs.

Before digital outputs A and B can perform their function, they must be enabled for the Counter integrated function. This is achieved by calling SFB 29 (input parameter EN_DO = 1) in the user program (see Section 4.6).

Following the enable, the reactions of comparators A and B are transmitted directly to the automation process via the integrated inputs/outputs.
If input parameter EN_DO is not enabled (EN_DO = 0), the Counter integrated function has no effect on digital outputs A and B. You can use digital outputs A and B as standard digital outputs.

Table 4-5 shows the relevant terminals.

Table 4-5 Terminals for the Actuators

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 12 | Q 124.0 | Digital output A |
| 13 | Q 124.1 | Digital output B |
| 18 | L+ | Supply voltage |
| 19 | M | Ground |

Terminal Connection Diagram

Figure 4-7 shows an example for wiring digital outputs A and B.


Figure 4-7 Actuator Wiring

### 4.6 System Function Block 29

## Introduction

The Counter integrated function is assigned to SFB 29. A graphical illustration of SFB 29 is shown in Figure 4-8.


Figure 4-8 Graphical Illustration of SFB 29

Input Parameters of SFB 29

In Table 4-6 you will find a description of the input parameters of SFB 29.

Table 4-6 Input Parameters of SFB 29

| Input Parameter | Description |
| :---: | :---: |
| EN | EN is the input parameter for enabling SFB 29. This input parameter causes the SFB to be executed. The input parameter has no effect on the execution of the integrated function. The SFB is executed as long as $\mathrm{EN}=1$. When $\mathrm{EN}=0$, the SFB is not executed. |
| PRES_COUNT | You can use this input parameter to store a new start value for the counter. It is accepted following a positive edge on the SET_COUNT input parameter or on a counting event ${ }^{1}$. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| PRES_COMP_A | You can use this input parameter to store a new COMP_A comparison value. It is accepted following a positive edge on input parameter SET_COMP_A or on a counting event ${ }^{1}$. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| PRES_COMP_B | You can use this input parameter to store a new COMP_B comparison value. It is accepted following a positive edge on input parameter SET_COMP_B or on a counting event ${ }^{1}$. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| EN_COUNT | You activate the counter with input parameter EN_COUNT. With this parameter you enable the counter from the user program. Input parameter EN_COUNT is ANDed with the Hardware Start/Stop digital input. That means that the Up and Down digital inputs are only evaluated by the integrated function when both of the input parameters are enabled. |
| EN_DO | When EN_DO = 1, the digital outputs are enabled for the Counter integrated function. |
| SET_COUNT | Following a positive edge on this input parameter, the start value PRES_COUNT is accepted. |
| SET_COMP_A | Following a positive edge on this input parameter, comparison value PRES_COMP_A is accepted. |
| SET_COMP_B | Following a positive edge on this input parameter, comparison value PRES_COMP_B is accepted. |

1 Counting event means that the actual value of the counter reaches or falls below a comparison value and the corresponding reaction is configured with STEP 7.

Output Parameters of SFB 29

Table 4-7 Output Parameters of SFB 29

| Output <br> Parameter | Description |
| :---: | :---: |
| ENO | Output parameter ENO indicates whether an error occurred during execution of SFB 29. If $\mathrm{ENO}=1$, no error occurred. If $\mathrm{ENO}=0, \mathrm{SFB} 29$ was not executed or an error occurred during execution. <br> Data type: $\quad$ Address ID: I, Q, M, Value range: $0 / 1$ (FALSE/TRUE) <br> BOOL L, D |
| COUNT | The actual value of the counter is output in this parameter. When the value range is exceeded, the following apply: <br> - Upper limit exceeded: the counting process continues with the minimum value in the value range. <br> - Lower limit exceeded: the counting process continues with the maximum value in the value range. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| COMP_A | The current COMP_A comparison value is output in this output parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D |
| COMP_B | The current COMP_B comparison value is output in this output parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| STATUS_A | The output parameter STATUS_A indicates the position of the actual value relative to comparison value COMP_A: <br> - Actual value COUNT $\geq$ comparison value COMP_A: output parameter STATUS_A enabled <br> - Actual value COUNT < comparison value COMP_A: output parameter STATUS_A not enabled <br> Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |
| STATUS_B | The output parameter STATUS_B indicates the position of the actual value relative to comparison value COMP_B: <br> - Actual value COUNT $\geq$ comparison value COMP_B: output parameter STATUS_B enabled <br> - Actual value COUNT < comparison value COMP_B: output parameter STATUS_B not enabled <br> Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D |

### 4.7 Structure of the Instance DB

Instance DB of SFB 29

Table 4-8 shows you the structure and the assignment of the instance DB for the Counter integrated function.

Table 4-8 Instance DB of SFB 29

| Address | Symbol | Meaning |
| :--- | :--- | :--- |
| DBD 0 | PRES_COUNT | Start value of counter |
| DBD 4 | PRES_COMP_A | Comparison value COMP_A (new) |
| DBD 8 | PRES_COMP_B | Comparison value COMP_B (new) |
| DBX 12.0 | EN_COUNT | Software start/stop |
| DBX 12.1 | EN_DO | Enable digital outputs |
| DBX 12.2 | SET_COUNT | Set counter |
| DBX 12.3 | SET_COMP_A | Set comparison value COMP_A |
| DBX 12.4 | SET_COMP_B | Set comparison value COMP_B |
| DBD 14 | COUNT | Actual value of counter |
| DBD 18 | COMP_A | Comparison value COMP_A (current) |
| DBD 22 | COMP_B | Comparison value COMP_B (current) |
| DBX 26.0 | STATUS_A | Status bit A |
| DBX 26.1 | STATUS_B | Status bit B |

Length of the Instance DB

The data for the Counter integrated function are 28 bytes in length and begin at address 0 in the instance DB.

### 4.8 Evaluation of Process Interrupts

## Introduction

## Events

Configurable
The Counter integrated function triggers process interrupts on the occurrence of certain events

Table 4-9 Events which can Cause a Process Interrupt

| Process Interrupt on | Description | Configuration |
| :--- | :--- | :--- |
| Actual value from <br> COMP_A-1 to COMP_A | A process interrupt is triggered when the actual value <br> reaches comparison value COMP_A from below. | Comparison value A reached <br> from below: process interrupt ac- <br> tivated |
| Actual value from <br> COMP_A to COMP_A-1 | A process interrupt is triggered when the actual value <br> falls below comparison value COMP_A. | Actual value below comparison <br> value A: process interrupt acti- <br> vated |
| Actual value from <br> COMP_B-1 to COMP_B | A process interrupt is triggered when the actual value <br> reaches comparison value COMP_B from below. | Comparison value B reached <br> from below: process interrupt ac- <br> tivated |
| Actual value from <br> COMP_B to COMP_B-1 | A process interrupt is triggered when the actual value <br> falls below comparison value COMP_B. | Actual value below comparison <br> value B: process interrupt acti- <br> vated |

## Process Interrupt OB

When a process interrupt occurs, the process interrupt OB (OB 40) is called up. The event which has invoked OB 40 is stored in the start information (declaration section) of the OB 40.

## Start Information of OB 40 for Integrated Function

Table 4-10 shows the relevant temporary (TEMP) variables of OB 40 for the Counter Integrated Function of the CPU 312 IFM/314 IFM. You will find a description of OB 40 in the System and Standard Functions Reference Manual.

Table 4-10 Start Information of OB 40 for Counter Integrated Function

| Variable | Data Type | Description |  |
| :--- | :--- | :--- | :--- |
| OB40_MDL_ADDR | WORD | B\#16\#7C | Display in local data word 6: <br> $\bullet$ <br> Address of module which triggered interrupt (in this case <br> the CPU) |
| OB40_POINT_ADDR | DWORD | see Figure 4-9 | Display in local data double word 8: <br> $\bullet$ <br> - Integrated function which triggered interrupt <br> Event which triggered interrupt |

## Display of the <br> Event which Triggered the Interrupt

From the variable OB40_POINT_ADDR you can read which Integrated Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8.

Please note: If interrupts from different inputs occur at very short time intervals ( $<100 \mu \mathrm{~s}$ ), several bits can be enabled at the same time. In other words, several interrupts may cause only one OB 40 start.


Figure 4-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter IF)?

## Evaluation in User Program <br> The evaluation of process interrupts in the user program is described in the Programming Manual System Software for S7-300/400, Program Design.

### 4.9 Calculating the Cycle Time and Response Times

The calculation of the cycle time for the CPUs is described in detail in the manual S7-300 Programmable Controller, Installation and Hardware. The following paragraphs describe the times which must be included in the calculation when the Counter integrated function is running.

## Calculation

You can calculate the cycle time with the following formula:
Cycle time $=\mathbf{t}_{\mathbf{1}}+\mathrm{t}_{\mathbf{2}}+\mathrm{t}_{\mathbf{3}}+\mathbf{t}_{\mathbf{4}}$
$\mathrm{t}_{1}=$ Process image transfer time (process output image and process input image) ${ }^{1}$
$\mathrm{t}_{2}=$ Operating system runtime including load generated by an executing integrated function ${ }^{1}$
$t_{3}=$ User program execution time ${ }^{2}$ including the SFB runtime when an SFB call is made in the program cycle ${ }^{3}$
$\mathrm{t}_{4}=$ Updating time of the instance DB at the cycle control point (if updating parameterized with STEP 7).

Runtime of SFB 29 The runtime of SFB 29 is typically $300 \mu \mathrm{~s}$.

## Instance DB

 Updating Time
## Increased Cycle Time

The updating time of the instance DB at the cycle control point is $150 \mu$ s for the Counter integrated function.

Please note that the cycle time can be increased due to:

- Time-controlled execution
- Interrupt handling
- Diagnostics and error handling

1 Please refer to the manual S7-300 Programmable Controller, Installation and Hardware for the time required for the CPU 312 IFM.
2 You have to determine the user program execution time, because it depends on your user program.
3 If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

## Response Time The response time is the time that elapses from the occurrence of an event at the input to the triggering of a reaction at the output of the programmable controller.

Reactions to Events generated at the inputs by the Counter integrated function can trigger Events the following:

- Reactions on the integrated inputs/outputs of the CPU
- Reactions of SFB 29


## Response Paths Figure 4-10 illustrates the various response paths.



Figure 4-10 Response Paths

Response Times Each response path results in a different response time. You will find the maximum response times for the Counter integrated function in Table 4-11.

Table 4-11 Response Times of the Counter Integrated Function

| Response Path | In Fig. 4-10 | Response Time |
| :--- | :---: | :---: |
| Integrated inputs/outputs <br> $\rightarrow$ Integrated inputs/outputs | $(1 \rightarrow(2)$ | $<1 \mathrm{~ms}$ |
| Integrated inputs/outputs $\rightarrow$ Process interrupt | $(1 \rightarrow 3)$ | $<1 \mathrm{~ms}$ |

### 4.10 Example Applications

## This Section

In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 4.10 .1 | Regular Counting with Comparison Value | $4-25$ |
| 4.10 .2 | Differential Counting | $4-31$ |
| 4.10 .3 | Periodic Counting | $4-40$ |

### 4.10.1 Regular Counting with Comparison Value

Task

Wiring

In a bottling plant, the filled bottles are transported along conveyor belts for packaging in empty crates.
A buffer store is provided for the bottles to ensure that a sufficient number bottles is always available. The buffer store has a limited capacity. If the number of bottles in the buffer store reaches the upper limit of 250 , the motor of conveyor 1 is switched off.

An operator can also stop the counting process by activating a normallyclosed switch, if a fault occurs or conveyor 1 starts running.

Please note: the example does not include a routine for emptying the buffer store.

The technology and wiring of the regular counting process are shown in Figure 4-11.


Figure 4-11 Regular Counting with Comparison Value

## Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-12.

Table 4-12 Wiring of the Inputs and Outputs (1)

| Terminal | Input/ Out- <br> put | Function in Example |
| :---: | :---: | :--- |
| 8 | I 124.6 | The positive edges are counted upwards. <br> 1 bottle which travels past the BERO proximity switch <br> and into the buffer store triggers 1 positive edge at <br> input 124.6. |
| 10 | I 125.0 | The Direction digital input is supplied with 24 V, that <br> is the Up digital input counts up and the Down digital <br> input counts down. |
| 11 | I 125.1 | The counting process can be interrupted by activating <br> the normally-closed switch (at the Hardware Start/Stop <br> digital input). |
| 12 | Q 124.0 <br> (Digital out- <br> put A) | The output is reset when comparison value COMP_A <br> is reached from below. <br> When the number of bottles in the buffer store = 250, <br> conveyor 1 is switched off. |
| 18 | L+ | 24 VDC supply voltage <br> 19 |
| M | Reference potential of supply voltage |  |

Sequence Diagram The sequence diagram in Figure 4-12 illustrates the relationship between the filling of the buffer store, the interruption of the counting process and the shut-down of the motor.


Figure 4-12 Sequence Diagram for Example 1

## Parameter Assignment with STEP 7

You assign the parameters for the CPU as follows with the STEP 7 tool S7 Configuration:

Table 4-13 Parameters for Example 1

| Parameter | Input | Description |
| :--- | :--- | :--- |
| Counter input: <br> Up | Positive edge | I 124.6 is activated for counting, positive edges <br> are counted |
| Counter input: <br> Down | Deactivated | I 124.7 is not used for integrated function |
| Number of <br> instance DB | 63 | Instance DB for the example (default value) |
| Automatic upda- <br> ting at the cycle <br> control point | Activated | The instance DB is updated at each cycle con- <br> trol point. |
| Comparison value reached from below (from COMP_A-1 to COMP_A) |  |  |
| Digital output A | Off | When the actual value reaches comparison va- <br> lue COMP_A, the motor is switched off |
| Process interrupt | Deactivated | Process interrupt not triggered |

Table 4-13 Parameters for Example 1, continued

| Parameter | Input | Description |
| :--- | :--- | :--- |
| Reset counter | Deactivated | Counter is not reset to new start value |
| Set comparator A | Deactivated | New comparison value is not defined |

1 Only necessary in CPU 314 IFM

## Cyclic Calling of SFB 29

SFB 29 is called cyclically in OB 1 . The comparison value 250 and the counter start value 0 are passed to SFB 29.

SFB 29 is illustrated in Figure 4-13.


Figure 4-13 Initialization of SFB 29 on Start-Up (1)

## Response at Output

## Status Bit in User Program

## Instance DB of SFB 29

User Program

As soon as 250 bottles have collected in the buffer store, conveyor 1 is shut down via output 124.0 (digital output A).

Conveyor 1 is switched on again when status bit A is no longer enabled, that is if there are fewer than 250 bottles in the buffer store.

In the example, the data are stored in instance DB 63.

The following listing shows the user program for the example. It was created with the Statement List Editor in STEP 7.

Global Data Used Table 4-14 shows the global data used in the user program.

Table 4-14 Global Data for Example 1

| Global Data | Meaning |
| :--- | :--- |
| MD 14 | Actual value of counter |
| MD 18 | Current comparison value A |
| M 24.0 | Enable execution of SFB 29 |
| M 24.1 | Store BR bit (= output parameter ENO of SFB 29) |
| M 26.0 | Status bit A |
| I 125.1 | Interrupt counting process |
| Q 124.0 | Actuate motor for conveyor 1 |

Statement Section You enter the following STL user program in the statement section of OB 100 OB 100:

| STL (OB | 100) |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network 1 |  |  |  |
|  | CALL | SFB 29, DB 63 | Call of SFB 29 with instance DB |
|  | PRES_COUNT : | = |  |
|  | PRES_COMP_A : | = |  |
|  | PRES_COMP_B: | $=$ |  |
|  | EN_COUNT : | = |  |
|  | EN_DO: | $=$ |  |
|  | SET_COUNT: | $=$ FALSE | SET_COUNT $=0$, to generate pos. edge in OB 1. |
|  | SET_COMP_A | $=$ FALSE | SET_COMP_A $=0$, to generate pos. edge in OB 1 . |
|  | SET_COMP_B | $=$ |  |
|  | COUNT : | = |  |
|  | COMP_A | = |  |
|  | COMP_B: | = |  |
|  | STATUS_A: | = |  |
|  | STATUS_B: | $=$ |  |
|  | A | BR | Scan BR bit (= ENO at SFB 29) to enable |
|  | $=$ | M 24.0 | SFB 29 in OB 1 |

OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section


### 4.10.2 Differential Counting

Introduction The following example is an extension of the example in Section 4.10.1.

## Extension of the If the number of bottles in the buffer store falls below 50, a red lamp lights Task

## Wiring

The technology and wiring of the differential counting process are shown in Figure 4-14.


Figure 4-14 Differential Counting

## Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-15.

Table 4-15 Wiring of the Inputs and Outputs (2)

| Terminal | Input/ Output | Function in Example |
| :---: | :---: | :---: |
| 8 | I 124.6 | The positive edges are counted upwards. <br> 1 bottle which travels past BERO proximity switch 1 and into the buffer store triggers 1 positive edge at input 124.6. |
| 9 | I 124.7 | The positive edges are counted downwards. <br> 1 bottle which travels past BERO proximity switch 2 , that is out of the buffer store on to conveyor 2, triggers 1 positive edge at input 124.7. |
| 10 | I 125.0 | The Direction digital input is supplied with 24 V , that is the Up digital input counts up and the Down digital input counts down. |
| 11 | I 125.1 | The counting process can be interrupted by activating the normally-closed switch (at the Hardware Start/Stop digital input). |
| 12 | Q 124.0 <br> (Digital output A) | The output is reset when comparison value COMP_A is reached from below. <br> When the number of bottles in the buffer store $=250$, conveyor 1 is switched off. <br> The output is set when the value falls below comparison value COMP_A (conveyor 1 is running). |
| 13 | $\text { Q } 124.1$ <br> (Digital output B) | The output is set when the value falls below comparison value COMP_B. <br> When the number of bottles in the buffer store falls below 50, the red lamp lights up. <br> The output is reset when comparison value COMP_B is reached from below (red lamp does not light up). |
| 18 | L+ | 24 VDC supply voltage |
| 19 | M | Reference potential of supply voltage |

Sequence Diagram The sequence diagram in Figure 4-15 illustrates the relationship between the number of bottles in the buffer store falling below 50 and indication by the red lamp. Conveyor 1 continues to run until the upper limit of 250 bottles has been reached in the buffer store.


Figure 4-15 Sequence Diagram for Example 2

## Parameter Assign-

 ment with STEP 7You assign the parameters for the CPU as follows with STEP 7:

Table 4-16 Parameters for Example 2

| Parameter | Input | Description |
| :--- | :--- | :--- |
| Counter input: <br> Up | Positive edge | I 124.6 is activated for counting, positive edges <br> are counted |
| Counter input: <br> Down | Positive edge | I 124.7 is activated for counting, positive edges <br> are counted |
| Number of <br> instance DB | 63 | Instance DB for the example (default value) |
| Automatic upda- <br> ting at the cycle <br> control point 1 | Activated | The instance DB is updated at each cycle con- <br> trol point |
| Comparison value reached from below (from COMP_A-1 to COMP_A) |  |  |
| Digital output A | Off | When the actual value reaches comparison va- <br> lue COMP_A, the motor is switched off |
| Process interrupt | Deactivated | Process interrupt is not triggered |
| Reset counter | Deactivated | Counter is not reset |
| Set comparator A | Deactivated | New comparison value is not specified |
| Value falls below comparison value (from COMP_A to COMP_A-1) |  |  |
| Digital output A | On | If the actual value falls below comparison |
| Set comparator B | Deactivated | New comparison value is not specified |
| Reset counter | Deactivated | Counter is not reset to new start value |
| Process interrupt | Deactivated motor is switched on. |  |
| Reset counter | Deactivated | Counter is not reset |
| Comparison value reached from below (from COMP_B-1 to COMP_B) |  |  |
| Digital output B | Off | If the actual value reaches comparison value <br> COMP_B, the red lamp goes out |
| Deactivated | Process interrupt is not triggered |  |

Table 4-16 Parameters for Example 2, continued

| Parameter | Input | Description |
| :--- | :--- | :--- |
| Value falls below comparison value (from COMP_B to COMP_B-1) |  |  |
| Digital output B | On | When the actual value falls below comparison <br> value COMP_B, the red lamp lights up |
| Process interrupt | Deactivated | Process interrupt is not triggered |
| Reset counter | Deactivated | Counter is not reset to new start value |
| Set comparator B | Deactivated | New comparison value is not specified |

1 Only necessary in CPU 314 IFM

## Initialization of SFB 29

SFB 29 is called on start-up from OB 100 and initialized. Comparison value 250 , comparison value 50 and the start value of counter 0 are transferred to SFB 29 (MD 0, MD 4 and MD 8). Figure $4-16$ shows SFB 29 with the initialized input parameters.


Figure 4-16 Initialization of SFB 29 on Start-Up (2)

SFB 29 is called cyclically in OB 1 . The assignment of SFB 29 is illustrated

As soon as the number of bottles in the buffer store falls below 50 , the red lamp is actuated via output 124.1 (digital output B).
in Figure 4-17.


Figure 4-17 Initialization of SFB 29 in the Cyclic Program (2)


Response at Output

## Cyclic Calling of SFB 29

User Program The following listing shows the user program for the example. It was created

Instance DB of
SFB 29

Global Data Used

In the example, the data are stored in instance DB 63. with the Statement List Editor in STEP 7.

Table 4-17 shows the global data used in the user program.

Table 4-17 Global Data for Example 2

| Global Data | Meaning |
| :--- | :--- |
| MD 0 | Start value of counter |
| MD 4 | Comparison value A (new) |
| MD 8 | Comparison value B (new) |
| MD 14 | Actual value of counter |
| MD 18 | Current comparison value A |
| MD 22 | Current comparison value B |
| M 26.0 | Statusbit A |
| M 26.1 | Statusbit B |
| M 26.2 | Enable execution of SFB 29 |
| M 26.3 | Store BR bit (= output parameter ENO of SFB 29) |
| I 125.1 | Interrupt counting process |
| Q 124.0 | Actuate motor for conveyor 1 |
| Q 124.1 | Actuate red lamp |

OB 100 Statement Section

You enter the following statement list (STL) user program in the statement section of OB 100:


OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section

| STL (OB |  |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network | 1 |  |  |
|  | - |  | Individual user program |
|  | A | M 26.3 | If M 26.3 = 1 , SFB is executed; |
|  | JNB | m01 | If RLO $=0$, jump to m01 |
|  | CALL | SFB 29, DB 63 | Call SFB 29 with instance DB |
|  | PRES_COUNT: |  |  |
|  | PRES_COMP_A | = |  |
|  | PRES_COMP_B: | = |  |
|  | EN_COUNT : | $=\mathrm{E} 125.1$ | The counting process can be interrupted by activating the normally-closed switch |
|  | EN_DO: | $=$ TRUE | Digital outputs are enabled for Counter integrated function |
|  | SET_COUNT : | $=$ TRUE | Start value PRES_COUNT is transferred |
|  | SET_COMP_A : | $=$ TRUE | Comparison value PRES_COMP_A is transferred |
|  | SET_COMP_B: | $=$ TRUE | Comparison value PRES_COMP_B is transferred |
|  | COUNT : | $=\mathrm{MD} 14$ | Assignment of output parameters |
|  | COMP_A | $=\mathrm{MD} 18$ |  |
|  | COMP_B: | = MD 22 |  |
|  | STATUS_A: | $=\mathrm{M} 26.0$ |  |
|  | STATUS_B: | $=$ |  |
| m01: | A | BR | Query BR bit (= ENO at SFB 29) for er- |
|  |  | M 26.3 | ror evaluation |
|  |  |  | Conveyor belt and lamps (Q 124.0 and Q 124.1) switched on and off automati- |
|  |  |  | cally by IF. |

### 4.10.3 Periodic Counting

## Introduction

## Task

The following example is an extension of the examples in Sections 4.10 .1 and 4.10.2. A second CPU 312 IFM is used for the implementation of the example.

The bottles are transported from the buffer store in empty crates along conveyor 2.

When the maximum capacity of a crate ( $=6$ bottles) has been reached, conveyor 2 is switched off, the slide is actuated and a time of approximately 5 s is started. During this time, the slide pushes the full crates onto conveyor 3.

When the 5 s are over, the slide is returned to its starting position, conveyor 2 restarts and the counting process starts on a new crate.

The operator can also stop the counting process by means of a normallyclosed contact switch if a fault occurs or conveyor 2 starts up.

The technology and wiring of the periodic counting process are shown in

Figure 4-18.

Technology Plan and Wiring


Figure 4-18 Periodic Counting

## Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-18.

Table 4-18 Wiring of the Inputs and Outputs (3)

| Terminal | Input/ <br> Output | Function in Example |
| :---: | :---: | :--- |
| 8 | I 124.6 | The positive edges are counted upwards. <br> 1 bottle which travels past BERO proximity switch 1 and <br> into the buffer store triggers 1 positive edge at input 124.6. |
| 10 | I 125.0 | The Direction digital input is supplied with 24 V, that is the <br> Up digital input counts up. |
| 11 | I 125.1 | The counting process can be interrupted by activating the <br> normally-closed switch (at the Hardware Start/Stop digital <br> input). |
| 13 | Q 124.1 <br> (Digital <br> output B) | The output is set by the integrated function when compari- <br> son value COMP_B is reached from below. <br> When the maximum capacity of a crate (= 6 bottles) has <br> been reached, a time of approximately 5 s is started during <br> which conveyor 2 is not running and a slide is actuated in <br> order to transport the full crate. |
| 14 | Q 124.2 | This output is used to actuate the motor for conveyor 2. |
| 18 | L+ | 24 VDC supply voltage <br> 19 |
| M | Reference potential of supply voltage |  |

## Sequence Diagram

The sequence diagram in Figure 4-19 illustrates the relationship between reaching the maximum capacity of 6 bottles and the movement of the slide during a defined period.


Figure 4-19 Sequence Diagram for Example 3

Parmeter Assignment with STEP 7

Table 4-19 Parameters for Example 3

| Parameter | Input | Description |
| :--- | :--- | :--- |
| Counter in- <br> put: Up | Positive <br> edge | I 124.6 is activated for counting, positive edges are <br> counted |
| Counter in- <br> put: Down | Deacti- <br> vated | I 124.7 is not used for integrated function |
| Number of <br> instance DB | 63 | Instance DB for the example (default value) |
| Automatic <br> updating at <br> the cycle <br> control <br> point | Activated | The instance DB is updated at each cycle control point |
| Comparison value reached from below (from COMP_B-1 to COMP_B) |  |  |
| Digital out- <br> put B | On | When the actual value reaches comparison value <br> COMP_B, a time is started and the slide is actuated. |
| Process inter- <br> rupt | Activated | Process interrupt is triggered, conveyor belt 2 is stopped <br> and the time for the slide is started. |
| Reset counter | Activated | Counter is reset to new start value (= 0 bottles) |
| Set compara- <br> tor A | Deactiva- <br> ted | New comparison value is not specified |

1 Only necessary in CPU 314 IFM

## Initialization of SFB 29

SFB 29 is called on start-up from OB 100 and initialized. Comparison value 6 and the starting value of counter 0 are transferred to SFB 29 (MD 0 and MD 8).

SFB 29 is illustrated in Figure 4-20 with the initialized input parameters.

| $\begin{array}{r} \text { M } 26.2- \\ \text { MD } 0- \end{array}$ | SFB 29  <br> EN ENO <br> PRES_COUNT COUNT <br> PRES_COMP_A COMP_A <br> PRES_COMP_B COMP_B <br> EN_COUNT STATUS_A <br> EN_DO STATUS_B <br> SET_COUNT  <br> SET_COMP_A  <br> SET_COMP_B  |  |
| :---: | :---: | :---: |
|  |  | - M 26.3 |
|  |  | - MD 14 |
|  |  |  |
| MD 8 |  | - MD 22 |
| FALSE |  | - |
| TRUE |  | - |
| FALSE |  |  |
|  |  |  |
| FALSE |  |  |

Figure 4-20 Initialization of SFB 29 on Start-Up (3)

## Evaluation of the Process Interrupt

## Instance DB of SFB 29

## User Program

## Global Data Used

The process interrupt starts OB 40 . A time of 5 s is started in OB 40 .
When the time is started, conveyor 2 is switched off in OB 1 and the slide is triggered by the integrated function. When the time expires, conveyor 2 is switched on again in OB 1.

In the example, the data are stored in instance DB 63.

The following listing shows the user program for the example. It was created with the Statement List Editor in STEP 7.

Table 4-20 shows the global data used in the user program.

Table 4-20 Global Data for Example 3

| Global Data | Meaning |
| :--- | :--- |
| MD 0 | Start value of counter |
| MD 8 | Comparison value B (new) |
| MD 14 | Actual value of counter |
| MD 22 | Current comparison value B |
| M 26.2 | Enable execution of SFB 29 |

Table 4-20 Global Data for Example 3

| Global Data | Meaning |
| :--- | :--- |
| M 26.3 | Storage of BR bit (= output parameter ENO of SFB 29) |
| T 0 | Time for slide actuation |
| I 125.1 | Interrupt counting process |
| Q 124.1 | Actuate slide |
| Q 124.2 | Actuate motor for conveyor 2 |

OB 100 Statement Section

You enter the following statement list (STL) user program in the statement section of OB 100:

| STL (OB | 100) |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network | 1 |  |  |
|  | L | L\#0 | Define start value PRES_COUNT in MD 0 |
|  | T | MD 0 |  |
|  | L | L\# 6 | Define new comparison value PRES_COMP_B |
|  | T | MD 8 | in MD 8 |
|  | SET |  | Enable execution of SFB 29 |
|  | = | M 26.2 |  |
|  | A | M 26.2 | If M $26.2=1$, i.e. $E N=1$ at $S F B 29$, then SFB is executed; |
|  | JNB | m01 | If RLO $=0$, jump to m01 |
|  | CALL | SFB 29, DB 63 | Call SFB 29 with instance DB |
|  | PRES_COUNT : | $=\mathrm{MD} 0$ | Assignment of input parameters |
|  | PRES_COMP_A: |  |  |
|  | PRES_COMP_B: | = MD 8 |  |
|  | EN_COUNT: | $=$ FALSE | Counter not yet enabled |
|  | EN_DO: | = TRUE | Digital outputs are enabled for Counter integrated function |
|  | SET_COUNT : | $=$ FALSE | SET_COUNT $=0$, to generate pos. edge in $O B 1$ |
|  | SET_COMP_A | $=$ |  |
|  | SET_COMP_B: | $=$ FALSE | SET_COMP_B $=0$, to generate pos. edge in $O B 1$ |
|  | COUNT : | $=\mathrm{MD} 14$ | Assignment of output parameters |
|  | COMP_A | = |  |
|  | COMP_B | $=\mathrm{MD} 22$ |  |
|  | STATUS_A: | = |  |
|  | STATUS_B: | = |  |
| m01 : | A | BR | Query BR bit (= ENO at SFB 29) for |
|  | $=$ | M 26.3 | error evaluation |

OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section

| STL (OB |  |  | Explanation |
| :---: | :---: | :---: | :---: |
| Network |  |  |  |
|  | - |  | Individual user program |
|  | SET |  | Motor for conveyor 2 is switched on |
|  | S | A 124.2 |  |
|  | A | M 26.2 | If M $26.2=1$, i.e. $E N=1$ at $S F B 29$, then SFB is executed |
|  | JNB | m01 | If RLO $=0$, jump to m01 |
|  | CALL | SFB 29, DB 63 | Call SFB 29 with instance DB |
|  | PRES_COUNT : | = |  |
|  | PRES_COMP_A: | = |  |
|  | PRES_COMP_B: | $=$ |  |
|  | EN_COUNT : | = I 125.1 | The counting process can be interrupted by activating the normally-closed switch |
|  | EN_DO: | $=$ |  |
|  | SET_COUNT : | $=$ TRUE | Counter is set at first OB 1 pass |
|  | SET_COMP_A: | = |  |
|  | SET_COMP_B : | = TRUE | Comparison value PRES_COMP_P |
|  |  |  | is set at first OB 1 pass |
|  | COUNT : | $=\mathrm{MD} 14$ | Assignment of output parameters |
|  | COMP_A | = |  |
|  | COMP_B: | $=\mathrm{MD} 22$ |  |
|  | STATUS_A: | = |  |
|  | STATUS_B: | = |  |
| m01: | A | BR | Query BR bit (= ENO at SFB 29) for er- |
|  | = | M 26.3 | ror evaluation |
|  | AN | T 0 | When the time of 5 s has expired, the |
|  | R | A 124.1 | slide is no longer actuated. |
|  | A | T 0 | As long as the time of 5 s is running, the motor for conveyor 2 is switched |
|  | R | A 124.2 | off and at the same time the slide is |
|  | AN | T 0 | triggered by the integrated function (Q) |
|  | FR | T 0 | 124.1) |

OB 40 Statement You enter the following statement list (STL) user program in the statement Section

| STL (OB 40) |  | Explanation |
| :---: | :---: | :---: |
| Network 1 |  |  |
| AN | T 0 |  |
| L | S5T\#5S | Start timer T 0 for 5 s |
| SV | T 0 |  |

## Counter A/B Integrated Function (CPU 314 IFM)

In this Chapter

| Section | Contents | Page |
| :---: | :--- | :---: |
| 5.1 | Function Overview | $5-2$ |
| 5.2 | How the Counter Operates | $5-3$ |
| 5.3 | Function of a Comparator | $5-5$ |
| 5.4 | Assigning Parameters | $5-7$ |
| 5.5 | Wiring | $5-9$ |
| 5.6 | System Function Block 38 | $5-13$ |
| 5.7 | Structure of the Instance DB | $5-15$ |
| 5.8 | Evaluation of Process Interrupts | $5-16$ |
| 5.9 | Calculating the Cycle Time and Response Times | $5-18$ |

## Example <br> Applications

Special applications of the Counter A/B integrated function will not be described in this chapter.

Example applications for the Counter integrated function can be found in Section 4.10 and following sections. You may use these applications as samples for the Counter $\mathrm{A} / \mathrm{B}$ integrated function.

### 5.1 Function Overview

Introduction

Purpose of the Integrated Function

In this section, you will find an overview diagram (block diagram) for the Counter A/B integrated function of the CPU 314 IFM. The block diagram contains the main components of the integrated function and all its input and output parameters.
Sections 5.2 and 5.3 refer to the block diagram. These sections describe the interaction of the main components of the Counter integrated function and their inputs and outputs.

The Counter A/B integrated function comprises counters A and B, which can count simultaneously and independently of one another. The principle of operation of both counters is identical.

The Counter $\mathrm{A} / \mathrm{B}$ integrated function enables the measurement of counting pulses up to a frequency of 10 kHz . The Counter A/B integrated function can count up and down.

Block Diagram
Figure 5-1 shows the block diagram for the Counter A/B integrated function.


Figure 5-1 Block Diagram for Counter A/B Integrated Function

### 5.2 How the Counters Operate

## Counter

The counter calculates the actual value of the counter from the counting pulses (up and down).

The counting pulses are measured via two digital inputs on the CPU: Up digital input and Down digital input. Only positive edges are evaluated on the digital inputs.

Precondition: You have used STEP 7 to configure the digital inputs Up and Down (see Section 5.4).

Actual Value of the Counter

## Function of the Counter

The counter calculates the actual value according to the following formula:
Actual value $=$ no. of edges on Up DI - no. of edges on Down DI

Figure 5-2 shows an example to illustrate how the actual value of the counter is changed by the counting pulses at the two digital inputs.


Figure 5-2 Counting Pulses and Actual Value of the Counter
Enable Counter

Reset Counter via
User Program

Reset Counter via User Program

Reset Counter if Actual Value
Reaches
Comparison Value

## Change Counting Direction

You can enable the Counter $\mathrm{A} / \mathrm{B}$ integrated function via the user program by setting input parameter EN_COUNT of SFB 38 to the ' 1 ' state.

All incoming counting pulses will be ignored as long as the EN_COUNT input parameter has signal state ' 0 '.

You can reset the counter to a reset value defined via STEP 7 in the user program. For this purpose, you have to apply a ' 1 ' signal to input parameter RESET of SFB 38.

As long as input parameter RESET has signal state 1 , the actual value is reset, i.e. the parameterized reset value is output as the COUNT actual value. The digital output is then set to ' 0 ' and no longer controlled by the integrated function.

The counter can be reset to a reset value parameterized via STEP 7. In STEP 7 , you can parameterize the integrated function in such a way that it resets the counter if the actual value COUNT reaches the comparison value COMP from below or drops below that value.

A signal change at the digital input for the counting direction causes the up/ down digital input to change the counting direction (up if " 1 " is applied; down if " 0 " is applied).

Precondition: You have used STEP 7 to configure the digital inputs Up and Down (see section 5.4).

## Frequency Limit Exceeded



The Counter A/B integrated function counts pulses up to a frequency of 10 kHz .

## Warning

If the current frequency exceeds the frequency limit of 10 kHz for several milliseconds:

- Correct operation of the integrated function is no longer assured
- The cycle load is increased
- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog responds, the CPU switches to STOP.

### 5.3 Function of a Comparator

The Counter $\mathrm{A} / \mathrm{B}$ integrated function has two integrated comparators. A comparator compares the actual value of the counter with a defined comparison value and triggers a reaction on the occurrence of a configured event.

Response of the Comparator to Events

You can configure the following events to which the comparator reacts:

- The actual value of the counter reaches the comparison value from below, that is the actual value changes from COMP-1 (COMP minus 1) to COMP.
- The actual value of the counter falls below the comparison value, that is the actual value changes from COMP to COMP-1.

Figure 5-3 shows an example of all possible events to which the comparator can react.

Defined: comparison value COMP $=100$
If the actual value of the counter changes from 99 to 100 , a reaction is triggered. If the actual value of the counter changes from 100 to 99 , a reaction is triggered.


Figure 5-3 Events to which a Comparator Reacts

## Configurable Reactions

The following reactions can be triggered when the actual value reaches or falls below the comparison value:

- Set/reset digital output
- Change previous state of the digital output
- Trigger a process interrupt
- Reset the counter
- Set the comparator

You configure the reactions with STEP 7. You will find an overview of the possible parameters and their value ranges in Section 5.4.

## Configure Digital You can configure the following properties for the digital output with Output STEP 7:

- On: the digital output is set
- Off: the digital output is reset
- Change: The previous output state changes, i.e. the digital output is either set or reset.
- Unaffected: the state of the digital output remains the same


## Example: Trigger Reactions

In Figure 5-4 you can see the reactions of the digital output when the actual value reaches and falls below comparison value COMP. The following parameters were assigned with STEP 7:

- Comparison value reached from below: Digital output $=$ on
- Value falls below comparison value: Digital output = unchanged


Figure 5-4 Example: Trigger Reactions

## Define New Comparison Values

You can define new comparison values with the input parameter PRES_COMP.

The new comparison value is accepted by the comparator:

- On a positive edge on the input parameter SET_COMP.
- On a counter event ${ }^{1}$ with parameterized response.

1 Counter event means the actual value of the counter reaches or leaves a comparison value and the relevant response has been parameterized with STEP 7 .

### 5.4 Assigning Parameters

```
Parameter Assignment with STEP 7
```


## Parameters and their Value Ranges

You assign the parameters for the integrated function with the integrated function using the STEP 7 software. How to work with STEP 7 is described in the manual Standard Software for 57 and M7, STEP 7.

Table 5-1 lists the parameters for the Counter $\mathrm{A} / \mathrm{B}$ integrated function.

Table 5-1 Counter A/B Register

| Parameter | Description | Value Range | Default Setting |
| :---: | :---: | :---: | :---: |
| Counting signals | You can parameterize digital inputs 126.0 and 126.1 for counter A and digital inputs 126.2 and 126.3 for counter B as follows: <br> - Digital input Up and digital input Down or <br> - Digital input Up/Down and digital input direction (Impulse und Richtung) <br> A signal change at the Direction digital input causes the counting direction to change at the Up/down digital input (Up if " 1 " is present; down if " 0 " is present). | Up and down Pulses and direction | Up and down |
| Reset value | You define a reset value. The actual value of the counter is reset on the reset value if: <br> - If the input parameter RESET of SFB 38 has signal state 1 <br> or <br> - If the actual value reaches the comparison value from below or falls below it (depending on parameter assignment) | $\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \end{aligned}$ | 0 |
| Number of the instance DB | The instance DB contains the data exchanged between the integrated function and the user program. | 1 to 127 | Counter A: 60 <br> Counter B: 61 |
| Automatic updating at the cycle control point | You determine whether the instance DB of the integrated function is to be updated at the cycle control point. | Activated/ deactivated | Activated |

Table 5-1 Counter A/B Register, continued

| Parameter | Description | Value Range | Default Setting |
| :---: | :---: | :---: | :---: |
| Actual value reaches comparison value from below (COUNT from COMP-1 to COMP) |  |  |  |
| Digital output | You can set the reaction of digital output when the actual value reaches the comparison value from below. <br> Change: The previous output state is changed, i.e. the digital output is either set or reset | Unaffected <br> On <br> Change <br> Off | Unaffected |
| Process interrupt | You can specify that a process interrupt is to be triggered when the actual value reaches the comparison value from below. | Activated/ deactivated | Deactivated |
| Reset counter | You can specify that the counter is reset on the reset value when the actual value reaches the comparison value from below. | Activated/ deactivated | Deactivated |
| Set comparator | You can specify that comparator is set when the actual value reaches the comparison value from below. | Activated/ deactivated | Deactivated |
| Parameter | Description | Value Range | Default Setting |
| Actual value falls below comparison value (COUNT from COMP to COMP-1) |  |  |  |
| Digital output | You can specify the reaction of digital output when the actual value falls below the comparison value. <br> Change: The previous output state is changed, i.e. the digital output is either set or reset | Unaffected <br> On <br> Change <br> Off | Unaffected |
| Process interrupt | You can specify that a process interrupt is triggered when the actual value falls below the comparison value. | Activated/ deactivated | Deactivated |
| Reset counter | You can specify that the counter is reset on the reset value when the actual value falls below the comparison value. | Activated/ deactivated | Deactivated |
| Set comparator | You can specify that comparator is set when the actual value falls below the comparison value. | Activated/ deactivated | Deactivated |

### 5.5 Wiring

In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 5.5 .1 | Connecting Sensors to the Integrated Inputs/Outputs | $5-10$ |
| 5.5 .2 | Connecting Actuators to the Integrated Inputs/Outputs | $5-12$ |

### 5.5.1 Connecting Sensors to the Integrated Inputs/Outputs

## Introduction

Two digital inputs per counter are provided at the integrated inputs/outputs for the connection of sensors.

Time Limits
When you set and reset the Direction digital input for counter A and/or B, you must observe the following limits:

- Before the first active edge of the counting pulse: Time $\geq 100 \mu \mathrm{~s}$
- After the first active edge of the counting pulse: Time $\geq 100 \mu \mathrm{~s}$


Figure 5-5 Timing of the Direction Digital Inputs for Counters A and B

## Terminals

The terminals of the integrated inputs/outputs on the CPU 314 IFM for the Counter integrated function are listed in Table 5-2. The function of the digital inputs has been parameterized by means of STEP 7 (see Section 5.4).

Table 5-2 Terminals for the Sensors

| Terminal | Identifier | Description |
| :---: | :---: | :--- |
| 2 (special) | I 126.0 | Counter A: Up <br> (Up/Down) |
| 3 (special) | I 126.1 | Counter A: Down <br> (Direction) |
| 4 (special) | Counter B: Up <br> (Up/Down) |  |
| 5 (special) | I 126.3 | Counter B: Down <br> (Direction) |
| Connection of CPU power supply | L+ | Supply voltage |
| Connection of CPU power supply | M | Ground |

## Terminal Connection Model

Figure 5-6 illustrates the connection of the sensors (for example, BERO) to the integrated inputs/outputs for counters A and B.

If you do not want to use only one counter - A or $\mathrm{B}-$ connect the sensors to inputs 126.0/126.1 for counter A or 126.2/126.3 for counter B.


Figure 5-6 Sensor Connecting

## Shielding

You must use shielded signal conductors to connect the sensors and you must connect the conductor shields to ground. Use the shield connecting element for this purpose.

You will find more detailed information on the installation of the conductor shield in the manual S7-300 Programmable Controller, Installation and Hardware.

### 5.5.2 Connecting Actuators to the Integrated Inputs/Outputs

Terminals

Terminal Connection Diagram

## Introduction <br> 1 digital output per counter is available for connecting actuators to the inte-

Table 5-3 shows the relevant terminals.

Table 5-3 Terminals for the Actuators

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 21 (digital) | L+ | Supply voltage |
| 22 (digital) | Q 124.0 | Digital output counter A |
| 23 (digital) | Q 124.1 | Digital output counter B |
| 30 (digital) | M | Ground | grated inputs/outputs.

Figure 5-7 shows an example of how actuators are connected to the digital outputs for counters A and B.

If you want to use only one counter - A or B - connect the actuators to output 124.0 for counter A or 124.1 for counter B.


Figure 5-7 Actuator Connecting

### 5.6 System Function Block 38

Introduction
The Counter $A / B$ integrated function comprises two counters - A and Bthat count simultaneously and independent of one another. The principle of operation is the same for both counters. Each counter is assigned to a separate instance DB (see Section 5.7).

The Counter integrated function,i.e. both counters, is assigned to SFB 38. A graphical illustration of SFB 38 is shown in Figure 5-8.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | EN | ENO |  |
|  | PRES_COMP | COUNT |  |
|  | EN_COUNT | COMP |  |
|  | RESET |  |  |
| Edge controlled | SET_COMP |  |  |

Figure 5-8 Graphical Illustration of SFB 38

Input Parameters
In Table 5-4 you will find a description of the input parameters of SFB 38. of SFB 38

Table 5-4 Input Parameters of SFB 38

| Input Parameter | Description |
| :--- | :--- |
| EN | EN is the input parameter for enabling SFB 38. This input parameter causes the SFB to be <br> executed. The input parameter has no effect on the execution of the integrated function. The <br> SFB is executed as long as EN =1. When EN = 0, the SFB is not executed. <br> Data type: BOOL <br> Address ID: I, Q, M, <br> L, D |
| PRES_COMP | You can use this input parameter to store a new PRES_COMP comparison value. It is accepted <br> following a positive edge on input parameter SET_COMP or on a counting event ${ }^{1}$. <br> Data type: DINT <br> Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 <br> L, D |
| EN_COUNT | As long as a "0" signal is applied to input parameter EN_COUNT, all incoming counting pulses <br> will be ignored. <br> As long as a "1" signal is applied to input parameter EN_COUNT, all incoming counting pulses <br> will be evaluated. <br> Data type: BOOL |

Table 5-4 Input Parameters of SFB 38, continued

| Input Parameter | Description |
| :---: | :---: |
| RESET | As long as a " 0 " signal is applied to input parameter RESET, the counter is ready for operation. <br> As long as a " 1 " signal is applied to input parameter RESET: <br> - The actual value will be reset, i.e. the parameterized reset value is output as the actual value COUNT. <br> - The digital output is set to signal state 0 and no longer influenced by the integrated function. <br> Data type: BOOL Address ID: I, Q, M, Value range 0/1 (FALSE/TRUE) <br> L, D |
| SET_COMP | Following a positive edge on this input parameter, comparison value PRES_COMP is accepted. <br> Datatype: BOOL Address ID: I, Q, M, Value range 0/1 (FALSE/TRUE) L, D |

1 Counting event means that the actual value of the counter reaches or falls below a comparison value and the corresponding reaction is configured with STEP 7.

Output Parameters of SFB 38

Table 5-5 Output Parameters of SFB 38

| Output Parameter | Description |
| :---: | :---: |
| ENO | Output parameter ENO indicates whether an error occurred during execution of SFB 38. If $\mathrm{ENO}=1$, no error occurred. If $\mathrm{ENO}=0, \mathrm{SFB} 38$ was not executed or an error occurred during execution. <br> Datatype: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) <br> L, D |
| COUNT | The actual value of the counter is output in this parameter. When the value range is exceeded, the following applies: <br> - Upper limit exceeded: the counting process continues with the minimum value in the value range. <br> - Lower limit exceeded: the counting process continues with the maximum value in the value range. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |
| COMP | The current COMP comparison value is output in this output parameter. <br> Data type: DINT Address ID: I, Q, M, Value range: from - 2147483648 to 2147483647 L, D |

### 5.7 Structure of the Instance DB

Introduction Each counter of the Counter A/B integrated function is assigned one instance DB:

- for counter A: DB 60
- for counter B: DB 61

The two instance DBs have identical structures.

Instance DB of SFB 38

Table 5-6 shows you the structure and the assignment of the instance DB for the Counter $\mathrm{A} / \mathrm{B}$ integrated function.

Table 5-6 Instance DB of SFB 38

| Address | Symbol | Meaning |
| :--- | :--- | :--- |
| DBD 0 | PRES_COMP | Comparison value (new) |
| DBX 4.0 | EN_COUNT | Enable |
| DBX 4.1 | RESET | Reset counter |
| DBX 4.2 | SET_COMP | Set comparator |
| DBD 6 | COUNT | Actual value of counter |
| DBD 10 | COMP | Comparison value (current) |

Length of the Instance DB

The data for the Counter A/B integrated function are 14 bytes in length and begin at address 0 in the instance DB.

### 5.8 Evaluation of Process Interrupts

## Introduction

Configurable Events

The Counter $\mathrm{A} / \mathrm{B}$ integrated function triggers process interrupts on the occurrence of certain events.

The events which can result in a process interrupt are listed in Table 5-7 together with the parameters you must assign in STEP 7.

Table 5-7 Events which can Cause a Process Interrupt

| Process Interrupt <br> on | Description | Configuration |
| :--- | :--- | :--- |
| Actual value from <br> COMP-1 to COMP | A process interrupt is triggered <br> when the actual value reaches com- <br> parison value COMP from below. | Process interrupt <br> activated |
| Actual value from <br> COMP to COMP-1 | A process interrupt is triggered <br> when the actual value falls below <br> comparison value COMP. | Process interrupt <br> activated |

## Process Interrupt OB

When a process interrupt occurs, the process interrupt $\mathrm{OB}(\mathrm{OB} 40)$ is called up. The event which has invoked OB 40 is stored in the start information (declaration section) of the OB 40 .

Table 5-8 shows the relevant temporary (TEMP) variables of OB 40 for the Counter Integrated Function of the CPU 312 IFM/314 IFM. You will find a description of OB 40 in the System and Standard Functions Reference Manual.

Table 5-8 Start Information of OB 40 for Counter A/B Integrated Function

| Variable | Data Type | Description |  |
| :---: | :--- | :--- | :--- |
| OB40_MDL_ADDR | WORD | B\#16\#7C | Display in local data word 6: <br> $\bullet$ <br> Address of module which triggered interrupt (in this case <br> the CPU) |
| OB40_POINT_ADDR | DWORD | see Figure 5-9 | Display in local data double word 8: <br> $\bullet \quad$ Integrated function which triggered interrupt <br> $\bullet$ <br> Event which triggered interrupt |

## Display of the Event which Triggered the Interrupt

From the variable OB40_POINT_ADDR you can read which Integrated Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8.

Please note: If interrupts from different inputs occur at very short time intervals ( $<100 \mu \mathrm{~s}$ ), several bits can be enabled at the same time. In other words, several interrupts may cause only one OB 40 start.


Figure 5-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter A/B IF)?

[^4]
### 5.9 Calculating the Cycle Time and Response Times

Introduction \begin{tabular}{l}
The calculation of the cycle time for the CPU 314 IFM is described in detail <br>
in the manual $S 7$-300 Programmable Controller, Installation and Hardware. <br>
The following paragraphs describe the times which must be included in the <br>
calculation when the Counter A/B integrated function is running.

$\quad$

You can calculate the cycle time with the following formula: <br>
Cycle time $=\mathbf{t}_{\mathbf{1}}+\mathbf{t}_{\mathbf{2}}+\mathbf{t}_{3}+\mathbf{t}_{\mathbf{4}}$ <br>

$\mathrm{t}_{1}=$| Process image transfer time (process output image and process input |
| :--- |
| image) | <br>


$\mathrm{t}_{2}=$| Operating system runtime including load generated by an executing |
| :--- |
| integrated function | <br>


$\mathrm{t}_{3}=$| User program execution time ${ }^{2}$ including the SFB runtime when an SFB |
| :--- |
| call is made in the program cycle ${ }^{3}$ | <br>


$\mathrm{t}_{4}=$| Updating time of the instance DB $^{1}$ at the cycle control point |
| :--- |
| (if updating parameterized with $S T E P 7$ ). |

\end{tabular}

Runtime of SFB 38 The runtime of the SFB is typically $230 \mu \mathrm{~s}$.

## Instance DB

 Updating Time
## Increased Cycle

 TimeThe updating time of the instance DB at the cycle control point is $100 \mu \mathrm{~s}$ for the Counter $\mathrm{A} / \mathrm{B}$ integrated function.

Please note that the cycle time can be increased due to:

- Time-controlled execution
- Interrupt handling
- Diagnostics and error handling

1 Please refer to the manual S7-300 Programmable Controller, Installation and Hardware for the time required for the CPU 314 IFM.
2 You have to determine the user program execution time, because it depends on your user program.
3 If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

Response Time The response time is the time that elapses from the occurrence of an event at the input to the triggering of a reaction at the output of the programmable controller.

Reactions to Events generated at the inputs by the Counter A/B integrated function can Events trigger the following:

- Reactions on the integrated inputs/outputs of the CPU 314 IFM
- Reactions of SFB 38

Response Paths Figure 5-10 illustrates the various response paths.


Figure 5-10 Response Paths

Response Times Each response path results in a different response time. You will find the maximum response times for the Counter $\mathrm{A} / \mathrm{B}$ integrated function in Table 5-9.

Table 5-9 Response Times of the Counter Integrated Function

| Response Path | In Fig. 4-10 | Response Time |
| :--- | :---: | :---: |
| Integrated inputs/outputs <br> $\rightarrow$ Integrated inputs/outputs | $(1 \rightarrow(2)$ | $<1 \mathrm{~ms}$ |
| Integrated inputs/outputs $\rightarrow$ Process interrupt | $(1 \rightarrow(3)$ | $<1 \mathrm{~ms}$ |

# Positioning Integrated Function (CPU 314 IFM) 

Introduction

## Performance Features

The Positioning integrated function of the CPU 314 IFM provides functions enabling open-loop positioning of axes in conjunction with a user program.

The Positioning integrated function does the following:

- Acquire signals from asymmetrical 24-V incremental encoders up to a frequency of 10 kHz
- Acquire a $24-\mathrm{V}$ signal on the traverse path for synchronizing the actual value (hardware synchronization)
- Enable synchronization via a control bit (software synchronization)
- Control a rapid traverse/creep speed drive or a frequency converter via digital outputs and an analog output of the integrated I/O

The Positioning integrated function is incorporated into the user program by specifying control data and by evaluating the status messages to a system function block (SFB).

| Section | Contents | Page |
| :---: | :--- | :---: |
| 6.1 | Introduction to the Positioning Integrated Function | $6-2$ |
| 6.2 | Functional Principle of the Positioning Integrated Function | $6-15$ |
| 6.3 | Parameter Assignment | $6-19$ |
| 6.4 | Controlling the Outputs via the Integrated function | $6-20$ |
| 6.5 | Effect of the Distance Between the Start and Destination <br> Position on Controlling the Outputs | $6-22$ |
| 6.6 | Wiring | $6-23$ |
| 6.7 | System Function Block 39 | $6-30$ |
| 6.8 | Structure of the Instance DB | $6-43$ |
| 6.9 | Calculating the Cycle Time | $6-44$ |
| 6.10 | Application Examples | $6-45$ |

### 6.1 Introduction to the Positioning Integrated Function

## Content of this

 SectionWho Should Read this Section?

In this Section

## Pulse Evaluation

In this section, you will learn the basics of reference point approach, jog mode and controlling drives, and you will find special information concerning the Positioning integrated function of the CPU 314 IFM.

If you have little or no experience of open-loop positioning, we recommend that you read this section.

| Section | Contents | Page |
| :---: | :--- | :---: |
| 6.1 .1 | Encoders and Power Sections for the Positioning Integrated <br> Function | $6-3$ |
| 6.1 .2 | Reference Point Approach | $6-5$ |
| 6.1 .3 | Jog Mode | $6-7$ |
| 6.1 .4 | Controlling Rapid Traverse/Creep Speed Drives | $6-9$ |
| 6.1 .5 | Controlling the Drive via Frequency Converters | $6-11$ |

You will find information on pulse evaluation via the Positioning integrated function in Appendix D.

### 6.1.1 Encoders and Power Sections for the Positioning Integrated Function

Encoder
Classification
In positioning, the path is acquired by an encoder. Encoders can be classified as follows:


Figure 6-1 Encoder Classification

## 24-V Asymmetrical Encoders

## Encoders for the CPU 314 IFM

## Signal Shapes

## Zero Mark Signal of the Encoders

Asymmetrical encoders are incremental encoders that generate two pulse trains A and B, phase-shifted by $90^{\circ}$, which are used for counting the path increments and for acquiring the direction.

You can only connect one asymmetrical incremental encoder (24 V) to the Positioning integrated function of the CPU 314 IFM. We recommend you use a SIEMENS incremental encoder (see Appendix D).

Figure 6-2 shows the shape of signals from 24-V asymmetrical encoders. You will find information on pulse evaluation via the Positioning integrated function in Appendix D


Figure 6-2 Signal Shapes of Asymmetrical Incremental Encoders

Most incremental encoders supply at each revolution a zero mark signal that can be used for synchronization. If you want to evaluate the zero mark signal, you will find details in Section 6.6 .1 of how to connect it to the integral inputs/outputs.

## Classification

According to Drive Control

Drives for the CPU 314 IFM

## Power Section

Power Sections for the CPU 314 IFM

In a positioning operation, the position is measured at moved parts. The movement is generated by a drive.

Application examples for positioning can be classified as follows according to drive control:


Figure 6-3 Classification According to Drive Control

The Positioning integrated function of the CPU 314 IFM can perform openloop control of electrical drives but not closed-loop control.

Instead of controlling the drive direct, the CPU 314 IFM does so via a power section.

Table 6-1 lists the power sections that can be controlled by the Positioning integrated function.

Table 6-1 Power Sections and Drives

| Power Section ... | ... drives |
| :--- | :--- |
| Contactor circuit | polarity-reversible asynchronous motor with veloc- <br> ity specified in steps (rapid traverse/creep speed) |
| Frequency converter | asynchronous or synchronous motor with stepless <br> velocity specification |

### 6.1.2 Reference Point Approach

Introduction

Example

Reference Point Switch

An incremental encoder supplies a train of pulses. The position of the axis relative to a reference point can be calculated from this pulse train. A reference point approach is required in order to synchronize the actual position of the axis with the actual value of the integrated function.

We show below how a reference point approach is carried out using the Positioning integrated function.

Let's take as an example a worktable which is used to position workpieces.
One or more machining operations are performed at a machining point. In the example below, holes are drilled in a workpiece. The worktable is stopped at the relevant position until machining is completed.


Figure 6-4 Worktable Example

A reference point switch (for example, a BERO) is fitted at the reference point. When the reference point switch trips, the worktable has reached the reference point. The actual position of the axis is synchronized to the actual value of the integrated function.

## Accuracy of the Reference Point

In practice, the reference point switch is implemented with a cam that is acquired with a switch, for example, a BERO.

The reference point switch supplies signal state 1 over a distance corresponding to the width of the cam.

In order to ensure a certain accuracy of the reference point,

- the reference point is assigned to the first counting pulse (increment) after the rising edge and
- the edge of the reference point switch is only evaluated if the reference point switch is reached from a specified direction.

Whether the reference point switch is to be evaluated from the forward or backward direction is parameterized with STEP 7.

Figure 6-5 shows the evaluation of the reference point switch when the forward direction has been parameterized with STEP 7.


Figure 6-5 Evaluation of the Reference Point Switch

Repeat Accuracy There is no guarantee that the edges of the reference point switch will always occur at exactly the same position on the axis since switches such as BEROs have a limited repeat accuracy.

Typical values for the repeat accuracy:

- Mechanical switches $10 \mu \mathrm{~m}$
- Forked light barriers
$100 \mu \mathrm{~m}$
- BEROs
$500 \mu \mathrm{~m}$
The actual repeat accuracy depends strongly on the special switch. The repeat accuracy also depends on external factors such as the velocity at which the switch is reached. You will find detailed information in the Product Information on the switch.


### 6.1.3 Jog Mode

Jog Mode

Using Jog Mode
(1) Moving the Axis Manually

Jog mode means moving the axis 'manually' to any position.
You execute jog mode either via the user program or via an operator panel (OP).

You use jog mode:
(1) If you want to move the axis 'manually' to a position
(2) For synchronizing the Positioning integrated function with the actual position of the axis

To correct faults on the machine, the axis has to be moved to a specific position. It must also be possible to do this even when the Positioning integrated function is not synchronized.

## (2) Synchronization of the Integrated Function

When the CPU 314 IFM is switched on, the Positioning integrated function cannot calculate the actual position of the axis because a reference point switch has not yet been reached and so the reference point has not yet been set. The Positioning integrated function is not synchronized with the axis and therefore cannot control a positioning operation.

To synchronize, move the axis in jog mode over a reference point switch.

## Synchronization Example

The 'Worktable positioning' example is considered again below (see Figure 6-4).

After switching on the system, the Positioning integrated function is synchronized as follows:

Regardless of the actual position of the worktable, the user program controls the worktable in jog mode until it reaches the start of the limit switch.

Following this, the user program controls the worktable in jog mode in the forward direction. The reference point switch is reached on the traverse and the actual position of the worktable is synchronized to the actual value of the integrated function.

Selecting Jog You select jog mode via the user program.

[^5]
### 6.1.4 Controlling Rapid Traverse/Creep Speed Drives

## Controllable Drives

The Positioning integrated function can control either:

- A rapid traverse and creep speed drive or
- A frequency converter

Contactor Circuit
Contactor circuits are used for driving polarity-reversible asynchronous motors.

Two different velocities can be implemented with polarity-reversible asynchronous motors - rapid traverse and creep speed.

Figure 6-6 shows the velocity profile of a rapid traverse and creep speed drive. It applies both for a positioning operation as well as for jog mode.
The destination position is first approached at a higher velocity (rapid traverse). At a specified distance from the destination position, the system switches to a lower velocity (creep speed). Shortly before the axis reaches the destination position, also at a specified distance to the destination position, the drive is switched off.

Creep speed serves only to increase positioning accuracy and corresponds to the stopping distance.

You paramaterize the stopping distance with STEP 7. The switch-off difference is specified via the user program.


Figure 6-6 Velocity Profile in the Case of Rapid Traverse and Creep Speed Drives
Special feature: If the distance between the start position and the destination position is less than or equal to the switch-off difference, the positioning operation is not executed.

## Control via 4 Digital Outputs

The CPU 314 IFM has one digital output for switching the drive to rapid traverse and one for switching it to creep speed.

The direction of rotation of the drive is specified via 2 further digital outputs.
Figure 6-7 shows the behavior of the relevant digital outputs during a positioning operation.


Figure 6-7 Positioning Operation in Forward Direction in the Case of Rapid Traverse and Creep Speed Drives

### 6.1.5 Controlling the Drive via Frequency Converters

Frequency
Converters

Determining the Velocity Profile

Frequency converters are used for driving asynchronous motors or synchronous motors.

The Positioning integrated function controls frequency converters with a velocity profile determined as follows:

- A maximum permissible velocity must not be exceeded. A maximum velocity must not be exceeded for mechanical reasons.
- A maximum permissible acceleration must not be exceeded. The acceleration forces working on a workpiece must not exceed a fixed maximum acceleration.
- The positioning operation should execute time-optimally under the abovenamed stipulations.

Figure 6-8 shows the velocity profile and acceleration profile of the drive within a positioning operation. This is an ideal representation and the drive is accelerated to maximum velocity/decelerated to standstill in 10 steps. The profiles apply both for a positioning operation and for jog mode. You specify the maximum velocity in the user program and you parameterize the acceleration and stopping distance with STEP 7.


Figure 6-8 Velocity/Acceleration Profile in the Case of Frequency Converters

## Switch-Off Difference

Figure 6-9 shows the velocity of the drive within a positioning operation. In the inset, you can see the switch-off difference that you specify via the user program.


Figure 6-9 Switch-Off Difference when Controlling a Frequency Converter

Special Feature: If the distance between the start position and the destination position is $\leq$ the switch-off difference, the positioning operation is not executed.

## Controlling <br> Frequency Converters

Frequency converters are controlled either via:

- 1 analog output (signal 0 to 10 V or 0 to 20 mA ) for specifying the velocity and 2 digital outputs for specifying the direction (forward, backward) or via
- 1 analog output (signal $\pm 10 \mathrm{~V}$ or $\pm 20 \mathrm{~mA}$ ) for specifying the velocity and the direction (forward, backward)

The analog values are output in steps (see Section 6.4).

The velocity of a drive is specified to the frequency converter as an analog signal 0 to 10 V or 0 to 20 mA . The maximum specifiable velocity corresponds to 10 V or 20 mA . You determine the maximum velocity in the user program.

It is up to you whether you use a voltage or a current value as the analog signal.

The direction of rotation of the drive is specified via 2 digital outputs.
Figure 6-10 shows the analog values at the analog output and the behavior of the relevant digital outputs.


Figure 6-10 Positioning Operation in Forward Direction (1 Analog and 2 Digital Outputs for Frequency Converter)

## Control via 1 Analog Output

The velocity of the drive is specified to the frequency converter as an analog signal $\pm 10 \mathrm{~V}$ or $\pm 20 \mathrm{~mA}$. The maximum specifiable velocity corresponds to +10 V or -10 V and +20 V or -20 V , respectively. You determine the maximum velocity in the user program.

It is up to you whether you use a voltage or a current value as the analog signal.

The direction of rotation of the drive is specified via the sign of the analog voltage/analog current.

Figure 6-11 shows the velocity at the analog output during a positioning operation.


Figure 6-11 Positioning Operation in Forward Direction (1 Analog Output for Frequency Converters)

### 6.2 Functional Principle of the Positioning Integrated Function

Overview
Figure 6-12 gives an overview of the inputs and outputs of the Positioning integrated function and the way in which they work together with the user program CPU 314 IFM.


Figure 6-12 Inputs and Outputs of the Positioning Integrated Function

Positioning Operation Sequence

Table 6-2 explains Figure 6-12 using a positioning operation example.

Table 6-2 Positioning Operation Sequence

| No. | Sequence Description |
| :---: | :--- |
| (1) | You start a positioning operation via the user program. |
| (2) | The Positioning integrated function starts the drive and controls <br> the velocity of the drive until the switch-off point is reached. |
| (3) | The actual position is acquired so that the Positioning integrated <br> function can control the drive. |
| (4) | The Positioning integrated function signals the completion of the <br> positioning operation to the user program. |
| (5) | All further responses relevant to the machining of the positioned <br> workpiece are initiated by the user program. |

Inputs and Outputs

Figure 6-13 shows the hardware and software inputs/outputs of the Positioning integrated function. The functions of the inputs and outputs are then explained. The structure of SFB 39 (software inputs/outputs) is explained in detail in Section 6.7.


Figure 6-13 Inputs and Outputs of the Positioning Integrated Function

## Overview of the Hardware Inputs/ Outputs

Table 6-3 gives an overview of the integral inputs/outputs on the CPU 314 IFM which you can wire with sensors and actuators for the Positioning integrated function.

You parameterize the function of the hardware outputs with STEP 7 (see Section 6.3).

Table 6-3 Overview of the Function of the Hardware Inputs/Outputs

| Input/Output on the CPU |  | Function when Controlling... |  |
| :---: | :---: | :---: | :---: |
|  |  | Rapid Traverse/Creep Speed Drive | Frequency Converter |
| Digital input, track A <br> Digital input, track B | $\begin{aligned} & \hline \text { I } 126.0 \\ & \text { I } 126.1 \end{aligned}$ | Connect incremental encoders for position encoding |  |
| Digital input, reference point switch | I 126.2 | Connect reference point switch (e.g. BERO) for synchronization |  |
| Digital output, creep speed <br> Digital output, rapid traverse | $\begin{aligned} & \text { Q } 124.0 \\ & \text { Q } 124.1 \end{aligned}$ | Output velocities for drive | - |
| Digital output, backward <br> Digital output, forward | $\begin{aligned} & \text { Q } 124.2 \\ & \text { Q } 124.3 \end{aligned}$ | Output direction of rotation for drive | If frequency converter can only process positive analog signals, specify direction of rotation for drive |
| Analog output, velocity | PQW 128 | - | If frequency converter can process signed analog signals, specify direction of rotation for drive Specify velocity for drive |

## Overview of Software Inputs/ Outputs

Table 6-4 gives an overview of the software inputs and outputs of the integrated function.

The software inputs/outputs are available to you as parameters in SFB 39. You assign the parameters in your user program. You will find a detailed description of the parameters in Section 6.7.

Table 6-4 Overview of the Function of the Software Inputs/Outputs

| Input/Output <br> Parameter in SFB 39 | Function |
| :--- | :--- |
| DEST_VAL | Specify destination position of the axis |
| REF_VAL | Specify value for a new reference point |
| SWITCH_OFF_DIFF | Specify switch-off difference |

Table 6-4 Overview of the Function of the Software Inputs/Outputs, continued

| Input/Output <br> Parameter in SFB 39 | Function |
| :--- | :--- |
| BREAK | Specify maximum velocity (max. analog value) with which positioning op- <br> eration/jog mode is to be executed |
| POS_MODE2 | Execute jog mode forward, abort jog mode/positioning operation |
| POS_MODE1 | Execute jog mode backward, abort jog mode/positioning operation |
| REF_ENABLE | Reference point switch will be evaluated when next reached |
| POS_STRT | Start positioning operation |
| SET_POS | New reference point accepted as actual position |
| ACTUAL_POS | Output: Current actual value |
| POS_READY | Indicator: Positioning operation completed |
| REF_VALID | Indicator: Whether or not synchronization has taken place during the cur- <br> rently executing positioning operation/jog mode |
| POS_VALID | Indicator: Integrated function is synchronized with axis |

## Boundary frequency

## Mechanical Instability

## Exceeding the <br> Boundary frequency

The Positioning integrated function counts pulses up to a maximum frequency of 10 kHz .

If counting pulses are initiated at tracks A and B due to mechanical instability, this can result in a loss of 1 increment in the worst case.

If pulse frequencies > 10 kHz occur for several milliseconds, please note the following warning:

## Warning

If the boundary frequency of 10 kHz is exceeded:

- Correct functioning of the integrated function cannot be guaranteed
- Cycle load increases
- Process interrupt response time increases
- Communication interference can result (including loss of connection).

If the cycle time monitor trips, the CPU goes to STOP.

### 6.3 Parameter Assignment

Parameter Assignment Software

You assign parameters to the integrated function with STEP 7. You will find a description of how to use STEP 7 in the User Manual Standard Software for S7 and M7, STEP 7.

Parameters and their Value Ranges

Table 6-5 lists the parameters for the Positioning integrated function of the CPU 314 IFM.

Table 6-5 "Positioning" Register

| Parameter | Explanation | Value Range | Default Setting |
| :---: | :---: | :---: | :---: |
| Drive control via | The following are available for controlling the power section: <br> - 4 digital outputs <br> - 2 digital outputs and 1 analog output ( 0 to $10 \mathrm{~V} / 0$ to 20 mA ) <br> - 1 analog output ( $\pm 10 \mathrm{~V} / \pm 20 \mathrm{~mA}$ ) <br> Select 4 digital outputs (DQs) for rapid traverse/creep speed drive. <br> Choose between the 2 other alternatives if you want to control a frequency converter. <br> Please note: To be able to process the output analog value in the CPU, direct the analog value to an analog input and read in this value. | - 4 digital outputs (DQs) <br> - $2 \mathrm{DQs}+1 \mathrm{AQ}$ <br> - 1 analog output (AQ) | 4 digital outputs (DQs) |
| Acceleration distance to maximum velocity (= stopping distance) | You determine the distance during which: <br> - the analog value in the case of frequency converters is output to the maximum value or reduced to " 0 " <br> - traverse is executed in the case of contactor circuits at rapid traverse or creep speed | $0^{*} ; 48 \text { to } 65535 \text { incre- }$ ments | 65535 incre- <br> ments |
| Evaluation of reference point switch by direction | You can determine the direction from which the reference point switch must be reached in order to be evaluated. | Forward Backward | Forward |
| Number of the instance DB | The instance DB contains the data exchanged between the integrated function and the user program. | 1 to 127 | 59 |
| Automatic updating at the cycle control point | You determine whether the instance DB of the integrated function is to be updated at each cycle control point or not. | Activated/deactivated | Activated |

[^6]
### 6.4 Controlling the Outputs via the Integrated Function

Controlling a Rapid Traverse/ Creep Speed Drive<br>Calculation of the Analog Value

You will find the velocity profile of the rapid traverse/creep speed drive and the control of the 4 digital outputs in Section 6.1.4.

Calculation of the analog value for control of the acceleration/stopping distance via a frequency converter is explained below. You will find the complete velocity profile in Section 6.1.5.

Figure 6-14 shows the analog values after the start of two positioning operations. In the enlarged view of the acceleration distances, you can see that the curves each consist of 10 steps of equal width and different height.

The analog values are therefore output in steps from the CPU. You specify the width of the steps indirectly with the acceleration/stopping distance. The height of the steps is fixed by the integrated function.

Please note the ratio of the step height to the step width and the associated traverse curve for your special application. The larger the acceleration/stopping distance you specify, the wider will be the steps.


Figure 6-14 Analog Value Output in Steps, BREAK $=0$

Stopping Distance The analog values for the stopping distance are output in the same 10 steps as for the acceleration distance (see Figure 6-14). The switch-off point is reached at the end of the last step $(=3.16 \mathrm{~V})$.

## Calculating the Step Width

The step width is calculated by the integrated function as follows:
Step width $=\frac{\text { Acceleration } / \text { stopping distance }}{10}$
Please note: The calculated step width is always rounded down so that the acceleration/stopping distance actually traversed is never greater than the parameterized acceleration/stopping distance.

## Example

Maximum Analog Value

The maximum analog value for controlling a frequency converter is calculated according to the following formulae:

$$
\mathrm{v}=\frac{10 \mathrm{~V}}{256} \times(256-\text { BREAK }) \text { or } \mathrm{v}=\frac{20 \mathrm{~mA}}{256} \times(256-\text { BREAK })
$$

You specify the input parameter "BREAK" of SFB 39 in the user program (see Table 6-11).

### 6.5 Effect of the Distance Between the Start and Destination Position on Controlling the Outputs

| Dependencies | Control of the outputs depends on the distance between the start and destina- <br> tion position of the axis. |
| :--- | :--- |
| Controlling a | Please note the behavior shown in Table 6-6 when defining the acceleration/ <br> stopping distance with STEP 7 and specifying the switch-off difference at the <br> input parameter SWITCH_OFF_DIFF of SFB 39 for a rapid traverse/creep |
| Creep Speed | speed drive. |

Table 6-6 Controlling Rapid Traverse/Creep Speed Drives

| Contactor Circuit | Distance Between Start and <br> Destination Position is... | Description |
| :--- | :--- | :--- |
| Digital outputs | > Acceleration/stopping dis- <br> tance + switch-off difference | It is started with rapid traverse (requirement: input parameter <br> BREAK = 0). |
|  | $\leq$ Acceleration/stopping dis- <br> tance + switch-off difference <br> > Switch-off difference | It is started with creep speed. |
|  | பSwitch-off difference | Does not start a positioning operation: POS_READY remains <br> unchanged at "1". |


| Controlling | Please note the behavior shown in Table $6-6$ when defining the acceleration/ <br> Frequency <br> stopping distance with $S T E P ~ 7 ~ a n d ~ s p e c i f y i n g ~ t h e ~ s w i t c h-o f f ~ d i f f e r e n c e ~ a t ~ t h e ~$ |
| :--- | :--- |
| input parameter SWITCH_OFF_DIFF of SFB 39 for controlling frequency |  |
| converters. |  |

Table 6-7 Controlling Frequency Converters

| Frequency <br> Converter | Distance Between Start and <br> Destination Position is... | Description |
| :--- | :--- | :--- |
| Analog output <br> Digital outputs | $\geq 2 \times$ acceleration/stopping dis- <br> tance + switch-off difference | The axis traverses the entire acceleration and stopping dis- <br> tance. |
|  | $<2 \times$ acceleration/stopping dis- <br> tance + switch-off difference <br> $>$ Switch-off difference | The axis traverses the distance to the switch-off point half as ac- <br> celeration distance and half as stopping distance. The max. ana- <br> log value is not reached. |
|  | <Switch-off difference | Does not start a positioning operation: POS_READY re- <br> mains unchanged at "1". |

Influencing the
Velocity

The velocity at which the drive is controlled by the frequency converter can be influenced at the BREAK input parameter of SFB 39. SFB 39 is described in Section 6.7 .

### 6.6 Wiring

This Section
This section describes

- How to connect the incremental encoder and the reference point switch to the integral inputs/outputs
- How to connect the different power sections to the integral inputs/outputs

In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 6.6 .1 | Connecting the Incremental Encoder and the Reference <br> Point Switch to the Integral Inputs/Outputs | $6-24$ |
| 6.6 .2 | Connecting the Power Section to the Integral Inputs/Outputs | $6-26$ |

### 6.6.1 Connecting the Incremental Encoder and the Reference Point Switch to the Integral Inputs/Outputs

## Introduction

## Evaluating the Zero Mark Signal

## Using Inputs for the Integrated Function

You connect tracks A and B of the incremental encoder and the reference signal to 3 digital inputs of the CPU 314 IFM.

Most incremental encoders supply at each revolution a zero mark signal that can be used for synchronization. If you want to evaluate the zero mark signal of the incremental encoder, connect it to the reference point switch digital input (I 126.2).

You will find information on pulse evaluation via the Positioning integrated function in Appendix D.

Please note the following when using the integral inputs/outputs with the Positioning integrated function:

## Note

For the proper functioning of the Positioning integrated function, you must not use anywhere else the inputs of the integral inputs/outputs used by the Positioning integrated function.

You can use the special inputs not required by the Positioning integrated function as standard digital inputs. However, interrupt initiation is not possible at these inputs. $($ Special inputs $=$ I 126.0 to I 126.3)

Table 6-8 shows you the relevant terminals of the integral inputs/outputs of the CPU 314 IFM for connecting the incremental encoder and the reference point switch.

Table 6-8 Terminals for Incremental Encoders and Reference Point Switch

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 2 | I 126.0 | Track A |
| 3 | I 126.1 | Track B |
| 4 | I 126.2 | Reference point switch |
| Connection of CPU voltage supply | L+ | Supply voltage |
| Connection of CPU voltage supply | M | Ground |

Terminal
Connection Model

Figure 6-15 shows the connections to the integral inputs/outputs. A BERO is used as the reference point switch.


Figure 6-15 Connecting Incremental Encoder and Reference Point Switch

You must use shielded signal cables for connecting the sensors and connect the cable shielding to ground. Use the shield connecting element for this purpose.

You will find detailed information on applying the cable shielding in the manual S7-300 Programmable Controller, Installation and Hardware.

### 6.6.2 Connecting the Power Section to the Integral Inputs/Outputs

## Introduction

## Enabling Outputs

## Using Outputs for IF

## Standard Outputs

## Contactor Circuit

## Terminals

There are 4 digital outputs and 1 analog output available to you at the integral inputs/outputs for connecting the power section. A contactor circuit for rapid traverse/creep speed drives or a frequency converter can be used as the power section.

If you have used STEP 7 to parameterize the CPU for positioning, the relevant outputs of the integral inputs/outputs will be automatically enabled for the Positioning integrated function.

Please note the following when using the integral inputs/outputs with the Positioning integrated function:

## Note

For the proper functioning of the Positioning integrated function, you must not use anywhere else the outputs of the integral inputs/outputs used by the Positioning integrated function.

You can use the outputs not required by the Positioning integrated function as standard digital outputs/analog output.

The contactor circuit is connected to 4 digital outputs.

Table 6-9 shows you the relevant terminals.

Table 6-9 Terminals for the Contactor Circuit

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 21 | L+ | Supply voltage |
| 22 | Q 124.0 | Creep speed digital output |
| 23 | Q 124.1 | Rapid traverse digital output |
| 24 | Q 124.2 | Backward direction digital output |
| 25 | Q 124.3 | Forward direction digital output |
| 30 | M | Ground |

Terminal Connection Model

Figure 6-16 is an example of how the contactor circuit is wired.


Figure 6-16 Connecting the Contactor Circuit

## Description of the

 Contactor Circuit

Contactors K1 and K2 control clockwise and anti-clockwise rotation of the motor. Both contactors are interlocked against each other by NC contacts K1 and K2. If either of the limit switches K1 or K2 is reached, the motor switches off.

Contactors K3 and K4 switch the motor from rapid traverse to creep speed. Both contactors are interlocked against each other by NC contacts K3 and K4.

## Caution

Interlock the contactors against each other as shown in Figure 6-16!
Failure to observe this regulation can lead to a short-circuit in the power network and result in the destruction of components.

Frequency
Converter

Terminals

Terminal Connection Model 1 Analog Output and 2 Digital Outputs

If you control a frequency converter, the following outputs are connected:

- Velocity analog output (current or voltage) and possibly
- Forward direction and backward direction digital outputs (if the frequency converter can only process positive analog signals).

Table 6-10 shows you the relevant terminals.

Table 6-10 Terminals for Frequency Converters

| Terminal | Identifier | Description |
| :---: | :---: | :---: |
| 6 | $\mathrm{AO}_{\mathrm{U}} 128$ | Velocity voltage analog output |
| 7 | $\mathrm{AO}_{\mathrm{I}} 128$ | Velocity current analog output |
| 20 | $\mathrm{M}_{\text {ANA }}$ | Analog ground |
| 24 | Q 124.2 | Backward direction digital output |
| 25 | Q 124.3 | Forward direction digital output |
| 30 | M | Ground |

Figure 6-17 shows an example wiring a frequency converter with 1 analog output and 2 digital outputs. Control here is via the velocity current analog output.


Figure 6-17 Connecting a Frequency Converter with 1 Analog Output and 2 Digital Outputs

## Terminal <br> Connection Model 1 Analog Output

Figure 6-18 shows an example wiring a frequency converter with 1 analog output. Control here is via the velocity voltage analog output.


Figure 6-18 Connecting a Frequency Converter with 1 Analog Output

### 6.7 System Function Block 39

## This Section

In this Section

## Structure of SFB 39

This section describes the structure of SFB 39, the functional principle of the input and output parameters of SFB 39 and the functionality of the Positioning integrated function.

| Section | Contents | Page |
| :---: | :--- | :---: |
| 6.7 .1 | Synchronization | $6-33$ |
| 6.7 .2 | Executing Jog Mode | $6-38$ |
| 6.7 .3 | Executing a Positioning Operation | $6-40$ |
| 6.7 .4 | Behavior of the Input and Output Parameters of SFB 39 at <br> CPU Operating State Transitions | $6-42$ |

The Positioning integrated function is assigned to SFB 39. Figure 6-19 is a graphical representation of SFB 39.


Figure 6-19 Graphical Representation of SFB 39

Input Parameters of SFB 39

Table 6-11 contains a brief description of the input parameters. The relationships between the input and output parameters are explained in more detail in the sections following this.

Table 6-11 Input Parameters of SFB 39

| Input Parameter | Description |
| :---: | :---: |
| EN | EN is the enable input of SFB 39. This enable input causes the SFB to be executed. The SFB is executed as long as $\mathrm{EN}=1$. When $\mathrm{EN}=0$, the SFB is not executed. |
| DEST_VAL | The destination position approached by the Positioning integrated function is stored at this input parameter. <br> Caution <br> In the synchronized state, the traverse range must be within the value range. The limits of the value range are not monitored. In the event of an overflow, counting continues with the smallest or greatest value in the value range. <br> Data type: DINT Address ID:I,Q,M,L,D Value range: from -2147483648 to 2147483647 |
| REF_VAL | You can store a new reference point at this input parameter. The reference point is accepted at synchronization (see Section 6.7.1). <br> Data type: DINT Address ID: I,Q,M,L,D Value range: from -2147483648 to 2147483647 |
| SWITCH_OFF _DIFF | You determine the switch-off difference (difference between the switch-off point and the destination position) in distance increments at this input parameter. <br> Datatype: WORD Address ID:I,Q,M,L,D Value range: from 0 to 65535 |
| BREAK | With this input parameter, you specify the maximum analog value with which a traverse movement can be controlled. The maximum analog value determines the maximum velocity of the traverse. <br> The following applies when controlling a frequency converter: $\mathrm{v}=\frac{10 \mathrm{~V}}{256} \times(256-\text { BREAK }) \text { or } \mathrm{v}=\frac{20 \mathrm{~mA}}{256} \times(256-\text { BREAK })$ <br> The maximum analog value you can specify is 10 V or 20 mA , that is, $\mathrm{BREAK}=0$. <br> The following applies when controlling a contactor circuit: <br> If BREAK $=0$, traverse is carried out at rapid traverse and creep speed. <br> IF BREAK 0 , traverse is only at creep speed. <br> Data type: BYTE Address ID:I,Q,M,L,D Value range: from 0 to 254 |
| POS_MODE1, POS_MODE2 | Jog mode is started and executed by combining POS_MODE1, POS_MODE2 and POS_STRT (see Section 6.7.2. <br> Data type: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |
| REF_ENABLE | This input parameter is used for selecting and enabling synchronization per hardware (see Section 6.7.1). <br> Data type: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |
| POS_STRT | The positioning operation is started following a rising edge at this input parameter (see Section 6.7.3). <br> Data type: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |
| SET_POS | Following a rising edge at this input parameter, the value at the REF_VAL input parameter is accepted as the new actual value by the integrated function (synchronization per software; see Section 6.7.1). <br> Data type: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |

## Output Parameters of SFB 39

Table 6-12 contains a brief description of the output parameters of SFB 39. The relationships between the input and output parameters are explained in the sections following this.

Please note: If the start position of the axis is in immediate proximity to a reference point or a switch-off point, inconsistencies between the indicated actual value and the status signals of the integrated function can result before the next increment is received.

Table 6-12 Output Parameters of SFB 39

| Output Parameter | Description |
| :---: | :---: |
| ENO | The ENO output parameter indicates whether an error has occurred during execution of SFB 39. IF ENO=1, no error has occurred. IF ENO=0, SFB 39 has not been executed or an error occurred during execution (see Appendix E) |
| ACTUAL_POS | The current actual position is continuously output at this output parameter. <br> Data type: DINT Address ID:I,Q,M,L,D Value range: from - 2147483648 to 2147483647 |
| POS_READY <br> (status signal) | This output parameter indicates whether the positioning operation or jog mode are running. If the positioning operation/jog mode has been completed (POS_READY $=1$ ), a new positioning operation can be started. <br> The positioning operation/jog mode is considered completed when the switch-off point has been reached or the positioning operation/jog mode has been aborted. <br> Caution <br> There is no guarantee that the axis is stopped if POS_READY $=1$. <br> Data type: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |
| REF_VALID <br> (status signal) | This output parameter indicates whether the reference point switch has been reached or not. It is set when hardware synchronization has taken place. <br> Datatype: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |
| POS_VALID <br> (status signal) | This output parameter indicates whether the actual position of the axis has been synchronized with the actual value of the integrated function. <br> If the signal state is 0 , synchronization has not taken place. The positioning operation cannot be started and only jog mode is possible. <br> Datatype: BOOL Address ID:I,Q,M,L,D Value range: 0/1 (FALSE/TRUE) |

## CPU Operating State Transitions

See Section 6.7 .4 for the states of the input and output parameters of SFB 39 in the case of CPU operating state transitions.

### 6.7.1 Synchronization

Two Synchronization Methods

The following synchronization methods are available for the integrated function:

- Software synchronization via the SET_POS input parameter of SFB 39
- Hardware synchronization via evaluation of the reference point switch digital input I 126.2 via the integrated function.

Software A new reference point is stored via the REF_VAL input parameter at SFB 39. Synchronization

## Hardware Synchronization

A new reference point is stored via the REF_VAL input parameter in SFB 39. This reference point is accepted as the actual value if:

- REF_ENABLE $=1$
- Signal state at I 126.2 changes from " 0 " to " 1 "
- The actual direction agrees with the direction parameterized in STEP 7 when the next counting pulse is evaluated (see Table 6-5).

The POS_VALID (synchronization has taken place) and REF_VALID (reference point switch reached) output parameters are set to " 1 ".

Synchronization, 2 Cases

Figure 6-20 shows 2 cases where synchronization takes place:

- Case 1: Start synchronization via REF_ENABLE input parameter
- Case 2: Start synchronization by starting jog mode (of the positioning operation)


Figure 6-20 Starting Synchronization

Table 6-13 contains the explanatory notes on Figure 6-20.

Table 6-13 Starting Synchronization

| Case | Time | Event |
| :--- | :---: | :--- |
| Case 1: <br> Start synchro- <br> nization via <br> REF_ENABLE | (1) | Jog mode forward is started via POS_MODE2. |
|  | $(3)$ | The signal state at REF_ENABLE changes from "0" to " 1 ": <br> REF_VALID $=0$. |
|  | A rising edge occurs at the input of the reference point switch I 126.2. |  |
| Case 2: <br> Start synchro- <br> nization via <br> starting Jog <br> Mode | (5) | The new reference point at REF_VAL is accepted by the integrated function as the <br> new actual value (synchronization takes place if this requirement is met: Parame- <br> terized direction agrees with actual direction). POS_VALID and REF_VALID are <br> set. |
|  | (6) | POS_VALID and REF_ENABLE have signal state " 1 ". Jog mode forward is re- <br> started via POS_MODE2. REF_VALID = 0. |
|  | A rising edge occurs at the input of the reference point switch I 126.2. |  |

## Synchronization Does Not Take Place

Although REF_ENABLE = 1 and an edge occurs at I 126.2, synchronization does not take place.

Reason: If the 1st pulse at I 126.0 is detected against the parameterized direction, synchronization does not take place. The edge at I 126.2 is no longer used. That is, even if the 2nd pulse is detected in the parameterized direction, synchronization does not take place.

Resynchronization to a new reference point is possible during a positioning operation or jog mode if the REF_ENABLE input parameter changes to " 1 " and the traversing direction is maintained. The reference point becomes valid as the new actual value when reference point switch I 126.2 is reached.

This means that a new destination position is approached that is located on the axis, offset to the old destination position by the difference between the new and old actual value.

## Note

If a positioning operation/jog mode is started with REF_ENABLE $=1$, REF_VALID is set to " 0 ". If the instance DB is not updated between reaching the reference point and starting the next positioning operation/jog mode, REF_VALID is not set to " 1 " although correct synchronization has taken place.

## Synchronization/ Resynchronization

Figure 6-21 illustrates synchronization with later resynchronization.


Figure 6-21 Hardware Synchronization and Resynchronization

Explanatory Notes
Table 6-14 contains explanatory notes on Figure 6-21. on Figure 6-21

Table 6-14 Hardware Synchronization and Resynchronization

| Time | Event |
| :---: | :--- |
| (1) | Regardless of whether synchronization has taken place or not (POS_VALID = 0 or 1), REF_ENABLE <br> is set to "1". If REF_VALID is set, it will be reset. |
| (2) | A rising edge occurs at the input of the reference point switch I 126.2. |
| (3) | The new reference point at REF_VAL is accepted as the new actual value by the integrated function <br> (synchronization takes place if this requirement is met: Parameterized direction agrees with actual <br> direction). <br> POS_VALID is set if not already set. REF_VALID is set. |
| (4) | If resynchronization is to take place, you must evaluate REF_VALID. REF_VALID must have signal <br> state "1". |
| (5) | If REF_ENABLE changes again from "0" to "1", REF_VALID is reset and resynchronized to a new <br> reference point REF_VAL after the next edge at I 126.2 (see (2) and (3). |

## Special Cases with Frequency Converters

Table 6-15 lists the special cases which can occur when controlling a frequency converter.

Table 6-15 Special Cases During Synchronization (Frequency Converter)

| Special Case | Explanation |
| :--- | :--- |
| $\begin{array}{l}\text { New switch-off point } \\ \text { has already been } \\ \text { passed }\end{array}$ | $\begin{array}{l}\text { If, during synchronization, the integrated function detects that } \\ \text { the new switch-off point has already been passed, all remaining } \\ \text { steps of the analog value are output at intervals of } 1 \text { increment } \\ \text { until analog value "0" is reached. }\end{array}$ |
| $\begin{array}{l}\text { New reference point } \\ \text { is within stopping } \\ \text { distance }\end{array}$ | $\begin{array}{l}\text { If, during synchronization, the integrated function detects that } \\ \text { the new reference point is within the stopping distance of the } \\ \text { positioning operation/jog mode, all steps of the analog value } \\ \text { are output at intervals of 1 increment until the currently valid } \\ \text { value is reached. }\end{array}$ |
| $\begin{array}{l}\text { Synchronization } \\ \text { takes place within ac- } \\ \text { celeration distance }\end{array}$ | $\begin{array}{l}\text { If the positioning operation/jog mode is within the acceleration } \\ \text { distance during synchronization, all steps of the analog value } \\ \text { are output until the currently valid value is reached. }\end{array}$ |
| If necessary, |  |
| - the analog value will be output at intervals of 1 increment |  |
| until the highest step is reached and then the stopping dis- |  |
| tance is started. |  |$\}$ - the acceleration distance/stopping distance will be in- | creased. |
| :--- |

Table 6-16 lists special cases which can occur when controlling a contactor circuit.

Table 6-16 Special Cases During Synchronization
(Contactor Circuit)

| Special Case | Explanation |
| :--- | :--- |
| New switch-off point <br> has already been <br> passed | If, during synchronization, the integrated function detects that <br> the new switch-off point has already been passed, traverse is <br> continued for 1 increment at creep speed and then switched off. |
| New reference point <br> is within stopping <br> distance | If, during synchronization, the integrated function detects that <br> the new reference point is within the stopping distance of the <br> current positioning operation/jog mode, traverse is continued <br> at creep speed until the switch-off point is reached. |

## Caution

If the special cases shown in Tables 6-15 and 6-16 cause impermissible or unforeseeable operating states of the axis, you must ensure there is no destination position or acceleration/stopping distance in the area of the reference point switch I 126.2.

### 6.7.2 Execute Jog Mode

## Jog Mode

## Please Note

## Selecting Jog Mode

Jog mode corresponds to a positioning operation in the value range -2147483648 to 2147483647 increments.

Jog mode is only started if the actual value is at the following interval to the lower or upper limit of the value range given above:

- $\geq 2 \mathrm{x}$ acceleration distance or stopping distance in the case of frequency converters
- > stopping distance in the case of a contactor circuit.

After a CPU STOP-RUN transition, the instantaneous actual value is taken from the instance DB . If this actual value is so close to one of the value range limits that jog mode cannot be started, you specify a new actual value with a rising edge at SET_POS to be able to then start jog mode.

Table 6-17 explains how to combine the input and output parameters for selecting/terminating jog mode.
Please note: Input parameter combinations other than those listed in Tables 6-17 and 6-18 are ignored.

Table 6-17 Selecting Jog Mode

| Jog Mode | Input/Output Parameter | Description |
| :--- | :--- | :--- |
| Jog mode <br> forward* | Requirement: POS_READY = 1 <br> POS_MODE1 = 0 <br> POS_MODE2 = 1 <br> POS_STRT = 0 | Jog mode forward is started and POS_READY is reset (see Fig- <br> ure 6-22). |
| Jog mode <br> backward* | Requirement: POS_READY = 1 <br> POS_MODE1 = 1 <br> POS_MODE2 = 0 <br> POS_STRT = 0 | Jog mode backward is started and POS_READY is reset. |

[^7]Terminating Jog Mode

For frequency converters, terminating means:

- jog mode is terminated normally via the stopping distance to the switchoff point.

For contactor circuits, terminating means:

- jog mode is terminated normally via creep speed to the switch-off point.

Both for frequency converters and for contactor circuits, "Abort jog mode" means that all outputs are immediately set to " 0 ". The traverse is not continued to the switch-off point to terminate jog mode. Jog mode can only be restarted after POS_MODE1 $=0$ and POS_MODE2 $=0$ has been specified.

Figure 6-22 shows jog mode forward, terminating jog mode and aborting jog mode using a contactor circuit example.


Figure 6-22 Jog Mode Forward and Terminating/Aborting Jog Mode

### 6.7.3 Executing a Positioning Operation

## Executing a Positioning Operation

Figure 6-18 explains how to combine the input and output parameters for selecting/terminating a positioning operation.
Please note: Input parameter combinations other than those listed in Tables 6-17 and 6-18 are ignored.

Table 6-18 Executing a Positioning Operation

| Positioning <br> Operation | Input/Output Parameter | Description |
| :--- | :--- | :--- |
| Start positioning op- <br> eration* | Requirement: POS_READY = 1 <br> Rising edge at POS_STRT <br> POS_MODE1 = 0 <br> POS_MODE2 = 0 | The positioning operation is started with the rising edge <br> at POS_STRT. <br> The destination position specified at DEST_VAL is ac- <br> cepted and POS_READY is reset. |
| Positioning operation <br> running | POS_STRT = 1 | The positioning operation is running and terminates <br> itself when the switch-off point is reached. <br> POS_READY is set to "1". |
| Terminate position- <br> ing operation prema- <br> turely | Falling edge at POS_STRT | The positioning operation is terminated prematurely. <br> POS_READY is then set to " $1 "$. |
| Abort positioning <br> operation* | POS_MODE1 = 1 <br> POS_MODE2 = 1 | The currently running positioning operation is aborted. <br> POS_READY is set to "1". |

* If the input parameters POS_MODE1/POS_MODE2 are set, you must reset them to " 0 " before they can be evaluated again by the integrated function.

Terminating the Positioning Operation

For frequency converters, terminating means:

- The positioning operation is terminated normally via the stopping distance to the switch-off point.
For contactor circuits, terminating means:
- The positioning operation is terminated normally via creep speed to the switch-off point.

Both for frequency converters and for contactor circuits, "Abort positioning operation" means that all outputs are immediately set to " 0 ". The traverse is not continued to the switch-off point to terminate the positioning operation.

## Aborting the Positioning Operation

Explanatory Notes Table 6-19 contains explanatory notes on Figure 6-23. on Figure 6-23

Table 6-19 Positioning Operation for Rapid Traverse/Creep Speed Drive

| Time | Event |
| :---: | :--- |
| (1) | POS_MODE1 and POS_MODE2 have signal state " 0 ". The positioning operation is started by a <br> rising edge at POS_STRT. POS_READY (previous positioning operation terminated) is simulta- <br> neously reset. |
| (2) | The integrated function switches to creep speed for the stopping distance. |
| (3) | The switch-off point is reached. This terminates the positioning operation. This is indicated with <br> POS_READY $=1$. |

## Positioning Operation Example

Figure 6-23 shows an example of a positioning operation over time. A positioning operation is started and a destination position is approached with a rapid traverse/creep speed drive.


Figure 6-23 Positioning Operation for Rapid Traverse/Creep Speed Drive Forward

### 6.7.4 Behavior of the Input and Output Parameters of SFB 39 at CPU Operating State Transitions

## STOP Operating State

Operating State Change

If the CPU 314 IFM is in the STOP mode, the integrated function is not active.

Table 6-20 describes the input/output parameter states that occur depending on the change of operating state.

Section 2.6 contains further information on the behavior of the integrated function in the different CPU operating states.

Table 6-20 Effects of a Change in CPU Operating State on the Integrated Function

| CPU Operating <br> State | Input/Output Parameter State | Description |
| :--- | :--- | :--- |
| STOP $\rightarrow$ RUN | ACTUAL_POS is not affected <br> POS_VALID $=0$ <br> REF_VALID $=0$ <br> POS_READY = 1 | currently being output <br> The integrated function is not synchronized and must <br> be synchronized before a positioning operation can be <br> started (see Section_6.7.1). |
| RUN $\rightarrow$ STOP | SET_POS = 0 <br> POS_STRT = 0 | No new reference point is accepted as the actual posi- <br> tion. <br> Positioning operation not executed. |
| RUN $\rightarrow$ STOP $\rightarrow$ <br> RUN | Consequences from the above-men- <br> tioned state of the parameters at $\rightarrow$ <br> RUN and RUN $\rightarrow$ STOP transition: <br> REF_ENABLE not affected <br> POS_MODE_1 not affected <br> POS_MODE_2 not affected | The state prior to CPU changing to STOP is accepted, <br> e.g.: <br> if REF_ENABLE was = 1, hardware synchroniza- <br> tion is possible <br> if jog mode had been selected, jog mode will be <br> started |
| Remedy: Initialize REF_ENABLE; POS_MODE1 |  |  |
| and POS_MODE2 in OB 100 with "0"" ("0" = |  |  |
| FALSE). |  |  |

### 6.8 Structure of the Instance DB

Instance DB of SFB 39

Table 6-21 shows you the structure and assignments of the instance DB of the Positioning integrated function.

Table 6-21 Instance DB of SFB 39

| Operand | Symbol | Meaning |
| :--- | :--- | :--- |
| DBD 0 | DEST_VAL | Destination position |
| DBD 4 | REF_VAL | Reference point |
| DBW 8.0 | SWITCH_OFF_DIFF | Switch-off difference |
| DBB 10 | BREAK | Maximum velocity (max. analog value) |
| DBX 11.0 | POS_MODE2 | Jog mode forward |
| DBX 11.1 | POS_MODE1 | Jog mode backward |
| DBX 11.2 | REF_ENABLE | Evaluate reference point switch |
| DBX 11.3 | POS_STRT | Start positioning operation |
| DBX 11.4 | SET_POS | Set actual value |
| DBD 12 | ACTUAL_POS | Actual position |
| DBX 16.0 | POS_READY | Positioning operation/jog mode terminated |
| DBX 16.1 | REF_VALID | Reference point switch has been reached |
| DBX 16.2 | POS_VALID | Synchronization has taken place |
| DBX 16.4 to <br> 16.7 | - | Reserved internally |

The data for the Positioning integrated function are 18 bytes long and begin with address 0 in the instance DB.

Length of the Instance DB

### 6.9 Calculating the Cycle Time

## Introduction

Calculation

Calculation of the cycle time for the CPU 314 IFM is described in detail in the manual S7-300 Programmable Controller, Installation and Hardware. Here, we also list those times that must be included in the calculation when the Positioning integrated function is running.

You can calculate the cycle time according to the following formula:
Cycle time $=\mathbf{t}_{\mathbf{1}}+\mathbf{t}_{\mathbf{2}}+\mathbf{t}_{\mathbf{3}}+\mathbf{t}_{\mathbf{4}}$
$\mathrm{t}_{1}=$ Process image transfer time (PII and PIQ) ${ }^{1}$
$\mathrm{t}_{2}=$ Operating system runtime including onloading resulting from integrated function ${ }^{2}$
$\mathrm{t}_{3}=$ User program execution time including SFB runtime if SFB call occurs in the program cycle ${ }^{3}$
$\mathrm{t}_{4}=$ Updating time of the instance DB at the cycle control point (if updating has been parameterized in STEP 7).

## SFB 39 Runtime

## Updating the

 Instance DBThe runtime of the SFB is typically $150 \mu \mathrm{~s}$.

Increase in Cycle Time

The updating time of the instance DB at the cycle control point is typically $100 \mu \mathrm{~s}$ for the Positioning integrated function.

Please note that the cycle time can increase as a result of:

- Time-controlled execution
- Interrupt processing
- Diagnostics and error processing

1 See the manual S7-300 Programmable Controller, Installation and Hardware for the time for the CPU 314 IFM.

2 You must calculate the user program execution time since it depends on your user program.
Please note: At the boundary frequency of 10 kHz , the execution of the user program can increase by approximately $10 \%$.
3 If the SFB is called several times in a program cycle, you must multiply the execution time of the SFB by the number of calls.

### 6.10 Application Examples

This Section
This section contains 3 application examples of the Positioning integrated function. The examples are the following practice-oriented applications:

- Cutting foil to length with synchronization to the workpiece start at the cutter
- Positioning cans of paint on a conveyor belt with synchronization to the workpiece start by a BERO
- Positioning a worktable with synchronization at a reference point switch in jog mode

In this Section

| Section | Contents | Page |
| :---: | :--- | :---: |
| 6.10 .1 | Cutting Foil to Length | $6-46$ |
| 6.10 .2 | Positioning Paint Cans | $6-52$ |
| 6.10 .3 | Positioning a Worktable | $6-60$ |

### 6.10.1 Cutting Foil to Length

Task

Installing New
Roll; Correcting Faults

An endless roll of foil is to be cut into lengths of 2 m .
An incremental encoder detects the distance between the start of the foil and the current actual position.

The foil is stopped for machining, that is, for cutting. The drive is controlled depending on the current actual position.

If a new roll is installed, the start of the foil may be irregular; if machine faults have occurred during operation, the foil may be damaged. In such cases, jog mode is used.

The foil is rolled off by the operator via the user program until the irregular foil start is behind the cutter. The foil is then cut and reference point 0 is taken by the integrated function as the new actual value.

The positioning operation is then started via the user program.

## Wiring

Figure 6-24 shows the technology schematic and the wiring of the example. The power section is a frequency converter with an analog output $\pm 10 \mathrm{~V}$ for direction and velocity.


Figure 6-24 Cutting Foil to Length

Function of the Inputs and Outputs

Table 6-22 lists the functions of the inputs and outputs for the example.

Table 6-22 Switching the Inputs and Outputs (Example 1)

| Terminal | Input/ <br> Output | Function in the Example |
| :---: | :---: | :--- |
| 2 | $\mathrm{I} \mathrm{126.0}$ | Encoder track A |
| 3 | $\mathrm{I} \mathrm{126.1}$ | Encoder track B |
| 6 | $\mathrm{AO}_{\mathrm{U}} 128$ | Analog output velocity <br> voltage |
| 20 | $\mathrm{M}_{\mathrm{ANA}}$ | Analog ground |
| Connection of voltage supply to the CPU | $\mathrm{L}+$ | Supply voltage |
| Connection of voltage supply to the CPU | M | Ground |

## Assigning mm Distance to Pulses (Distance Increments)

The incremental encoder supplies 100 pulses per revolution. 1 revolution of the incremental encoder corresponds to 5 revolutions of the motor. The incremental encoder therefore supplies 20 pulses per motor revolution. The foil moves 4 mm per motor revolution.
$4 \mathrm{~mm}: 20$ pulses $=0.2 \mathrm{~mm}$
One pulse is accordingly assigned a distance of 0.2 mm . 1 pulse corresponds to 1 distance increment.

In Figure 6-25, you can see the distances/pulses assignment within a positioning operation. The foil is cut to lengths of 2 m . Conversion of mm to pulses (distance increments) is as follows:
$2000 \mathrm{~mm}: 0.2 \mathrm{~mm}=10000$ pulses (distance increments)


Figure 6-25 Assignment of Distances/Pulses

You specify the destination position of $\mathbf{1 0 0 0 0}$ pulses (distance increments) to SFB 39.

Distance to be Covered

## Maximum Velocity

## Determining the <br> Acceleration/ Stopping Distance

## Parameterizing with STEP 7

The foil consists of tear-resistant material so there is a maximum analog value of 10 V at the analog output $(\mathrm{V}=10)$. Specify BREAK $=0$ at SFB 39 according to the following equation.

$$
\mathrm{v}=\frac{10 \mathrm{~V}}{256} \times(256-\text { BREAK }) \text { or } \operatorname{BREAK}=256 \times\left(1-\frac{\mathrm{v}}{10 \mathrm{~V}}\right)
$$

You must parameterize the distance to be traversed from the start of the positioning operation until the maximum velocity is reached.

The maximum velocity is to be reached after 0.1 m . Conversion from mm to pulses is as follows:
$100 \mathrm{~mm}: 0.2 \mathrm{~mm}=\mathbf{5 0 0}$ pulses $($ distance increments $)=$ Acceleration/stopping distance

You parameterize the CPU with STEP 7 as follows:

Table 6-23 Parameters for Cutting Foil to Length

| Parameter | Input | Explanation |
| :--- | :--- | :--- |
| Electrical charac- <br> teristics | 1 analog output (AQ) | The motor is driven via a frequency <br> converter with one analog output <br> $\pm 10$ V for direction and velocity. |
| Acceleration dis- <br> tance to maximum <br> velocity (= stop- <br> ping distance) | 500 | You define the distance in distance in- <br> crements in which the analog value is <br> output to the maximum value or re- <br> duced to " 0 ". |
| Evaluation of the <br> reference point <br> switch fordirection | Forward direction | The reference point switch is evaluated <br> when it is reached in the forward direc- <br> tion. |
| Number of the <br> instance DB | 59 | Instance DB for the example (default <br> value) |
| Automatic updat- <br> ing at the cycle <br> control point | Activated | The instance DB us updated at each <br> cycle control point. |

To ensure that the destination position is reached as accurately as possible, you must:

1. Specify switch-off difference 0 to SFB 39 via the user program
2. Move the foil once via the Positioning integrated function
3. Measure the difference between the actual destination position reached and the specified destination position
4. Specify this difference as the switch-off difference in increments to SFB 39

Instance DB of SFB 39

Initialization of SFB 39

In the example, the data are stored in instance DB 59.

Figure 6-26 shows SFB 39 with initialized parameters from DB 10.


Figure 6-26 Initialization of SFB 39 on Start-Up (1)

User Program Below is the user program for the example. It has been created with the STL Editor in STEP 7.

DB 10 The data for SFB 39 are stored in DB 10. The DB has the following structure:

Table 6-24 Example 1: Positioning, DB 10 Structure

| Address | Name | Type | Starting <br> value | Comment |
| :--- | :--- | :--- | :--- | :--- |
| 0.0 |  | STRUCT |  | L\#10000 |
| +0.0 | DEST_VAL | DINT | Destination position : Length of the <br> foil $=2 \mathrm{~m}$ |  |
| +4.0 | REF_VAL | DINT | L\#0 | Reference point = 0 |
| +8.0 | SWITCH_OFF_DIF | INT | 0 | Switch-off difference (calculated at <br> startup) |
| +10.0 | Break | BYTE | B\#16\#0 | Maximum velocity = 10 v |
| +11.0 | --- | BYTE | B\#16\#0 | Unused |
| +12.0 | Control byte | BYTE | B\#16\#0 | Control bits for positioning |
| +13.0 | Checkback byte | BYTE | B\#16\#0 | Checkback status bits from position- <br> ing |
| $=14.0$ |  | END_STRUCT |  |  |

Statement Section You enter the following user program in the statement section of OB 1: OB 1


| Automatic mode |  |  |  |
| :---: | :---: | :---: | :---: |
|  | AN | I 0.3 |  |
|  | AN | DB10. DBX | 12.5 |
|  | BEC |  |  |
|  | AN | DB10.DBX | 12.2 |
|  | S | DB10.DBX | 12.2 |
|  | S | DB10.DBX | 12.5 |
|  | BEC |  |  |
|  | A | DB10.DBX | 13.0 |
|  | S | DB10.DBX | 12.4 |
|  | R | DB10.DBX | 12.2 |
|  | R | DB10.DBX | 12.5 |
|  | BEU |  |  |
| Cut foil, accept reference point |  |  |  |
| m1: | NOP | 0 |  |
|  | A | I 0.7 |  |
|  | A | DB10.DBX | 12.3 |
|  | R | DB10.DBX | 12.3 |
|  | R | DB10. DBX | 12.4 |
|  | R | Q 4.0 |  |
|  | L | S5T\#500MS |  |
|  | A | DB10.DBX | 12.4 |
|  | SD | T 1 |  |
|  | A | DB10.DBX | 13.0 |
|  | A | DB10.DBX | 12.4 |
|  | A | T 1 |  |
|  | S | DB10. DBX | 12.3 |
|  | S | Q 4.0 |  |

Automatic mode switch
Auxiliary memory marker for terminating automatic mode
Start positioning operation
Set auxiliary memory marker for terminating automatic mode
If positioning terminated, then
set memory marker for cutting the foil
Reset auxiliary memory marker

Checkback signal from cutter, cutting terminated
Reference point has been accepted by IF as new actual value
Reset signal
Reset memory marker for cutting job
Reset signal for cutter
Waiting time till drive standstill
(e.g.: 500 ms )

Positioning terminated,
Memory marker for cutting job set
and time out?
Then accept reference point as actual value
Start cutting

### 6.10.2 Positioning Paint Cans

## Task

Marginal Conditions for Positioning

We have a conveyor belt on which paint cans stand in a continuous sequence.
At one processing point, the paint cans are filled with paint. The conveyor belt is stopped at the relevant position until filling is completed.

The following marginal conditions must be observed when designing the system:

- For mechanical reasons, the velocity must not exceed a system-specific maximum.
- A maximum acceleration must not be exceeded in order to avoid paint spills.
- The positioning operation is to run time-optimally so that as many paint cans as possible can be filled in the shortest time possible.

The motor is controlled via a frequency converter. The frequency converter is controlled by an analog output in order to guarantee as gentle a startup as possible, thus preventing paint spills.

## Switching On the System (Setting Up 1st Paint Can)

After switching on the system, the Positioning integrated function is synchronized as follows:

The conveyor belt is moved forward in jog mode via the user program until the reference point switch (BERO) detects the edge of a paint can. Simultaneously, the system synchronizes to the edge of the paint can and the motor is switched off.

Then the positioning operation is started via the user program.

Wiring
Figure 6-27 shows the technology schematic and the wiring of the example. The power section is a frequency converter with an analog output $\pm 10 \mathrm{~V}$ for direction and velocity.


Figure 6-27 Positioning Paint Cans

Function of the Inputs and Outputs

Table 6-25 lists the functions of the inputs and outputs for the example.

Table 6-25 Switching the Inputs and Outputs (Example 2)

| Terminal | Input/ <br> Output | Function in the Example |
| :---: | :---: | :--- |
| 2 | I 126.0 | Encoder track A |
| 3 | I 126.1 | Encoder track B |
| 4 | I 126.2 | Reference point switch |
| 6 | $\mathrm{AO}_{\mathrm{U}} 128$ | Analog output velocity <br> voltage |
| 20 | $\mathrm{M}_{\text {ANA }}$ | Analog ground |
| Connection of CPU voltage supply | $\mathrm{L}+$ | Supply voltage |
| Connection of CPU voltage supply | M | Ground |

Positioning
Operation
Sequence (Automatic Mode)

## New Positioning Operation

The positioning operation is started via the user program. The conveyor belt travels 300 mm in the forward direction to the destination position (approximate center of paint can).

When the edge of a paint can is detected by the BERO (reference point switch), the system synchronizes at actual value 50 mm . The conveyor belt stops at destination position 300 mm and the paint can is filled. Simultaneously, the system synchronizes to actual value 0 mm .

Figure 6-28 shows a section of the conveyor belt with the values to be specified for positioning in mm .


Figure 6-28 Positioning Operation Sequence

When a paint can has been filled, the user program starts a new positioning operation. The conveyor belt travels 300 mm in the forward direction to the destination position and synchronization takes place again to actual value 50 mm at the edge of the paint can.

The incremental encoder supplies 100 pulses per revolution. 1 revolution of the incremental encoder corresponds to 5 revolutions of the motor. The incremental encoder therefore supplies 20 pulses per motor revolution. The conveyor belt moves 40 mm per motor revolution.
$40 \mathrm{~mm}: 20$ pulses $=2 \mathrm{~mm}$
One pulse is accordingly assigned a distance of 2 mm .1 pulse corresponds to 1 distance increment.

## Assigning mm Distance to Pulses (Distance Increments)

## Assigning

Reference Point
Switch and
Destination
Position

In Figure 6-29, you can see assignment of distances/pulses to the reference point switch (BERO) within a positioning operation. Conversion of mm to pulses (distance increments) is as follows:
$50 \mathrm{~mm}: 2 \mathrm{~mm}=25$ pulses (distance increments)
$300 \mathrm{~mm}: 2 \mathrm{~mm}=150$ pulses (distance increments)


Figure 6-29 Assignment of Distances/Pulses

You specify the destination position of $\mathbf{1 5 0}$ pulses (distance increments) to SFB 39.

5 V is to be output as the maximum analog value at the analog output $(\mathrm{v}=5)$. You specify BREAK $=128$ to SFB 39 according to the following equation:

$$
\mathrm{v}=\frac{10 \mathrm{~V}}{256} \times(256-\text { BREAK }) \text { or BREAK }=256 \times\left(1-\frac{\mathrm{v}}{10 \mathrm{~V}}\right)
$$

You must parameterize the distance to be traversed from the start of the positioning operation until the maximum velocity is reached.

The maximum velocity is to be reached after 0.1 m . Conversion from mm to pulses is as follows:
$100 \mathrm{~mm}: 2 \mathrm{~mm}=\mathbf{5 0}$ pulses $($ distance increments $)=$ Acceleration $/$ stopping distance

## Parameterizing You parameterize the CPU with STEP 7 as follows: with STEP 7

Table 6-26 Parameters for Positioning Paint Cans

| Parameter | Input | Explanation |
| :--- | :--- | :--- |
| Drive control via | 1 analog output (AQ) | The motor is driven via a frequency <br> converter with one analog output <br> $\pm 10$ V for direction and velocity. |
| Acceleration dis- <br> tance to maximum <br> velocity (= stop- <br> ping distance to <br> standstill) | 50 | You define the distance in distance in- <br> crements in which the analog value is <br> output to the maximum value or re- <br> duced to " 0 ". |
| Evaluation of the <br> reference point <br> switch for | Forward direction | The reference point switch is evaluated <br> when it is reached in the forward direc- <br> tion. |
| Number of the <br> instance DB | 59 | Instance DB for the example (default <br> value) |
| Automatic updat- <br> ing at the cycle <br> control point | Activated | The instance DB us updated at each <br> cycle control point. |

## Determining the Switch-Off Difference

Instance DB of SFB 39

To ensure that the destination position is reached as accurately as possible, you must:

1. Specify switch-off difference 0 to SFB 39 via the user program
2. Move the conveyor belt once via the Positioning integrated function
3. Measure the difference between the actual destination position reached and the specified destination position
4. Specify this difference as the switch-off difference to SFB 39

In the example, the data are stored in instance DB 59.

Initialization of SFB 39

Figure 6-30 shows SFB 39 with initialized parameters from DB 2 for setting up the 1st paint can (jog mode).


Figure 6-30 Initialization of SFB 39 on Start-Up (2)

User Program
Below is the user program for the example. It has been created with the STL Editor in STEP 7.

The data for SFB 39 are stored in DB 2. The DB has the following structure:

Table 6-27 Example 2: Positioning, DB 2 Structure

| Address | Name | Type | Starting <br> Value | Comment |
| :--- | :--- | :--- | :--- | :--- |
| 0.0 | DEST_VAL | DINT | L\#150 | Destination position: Center of <br> paint can $=300$ m |
| 4.0 | Reference point | DINT | L\#0 | always contains the currently valid <br> reference point (Refp1 or Refp2) |
| 8.0 | SWITCH_OFF_DIFF | INT | 0 | Switch-off difference (calculated at <br> startup) |
| 10.0 | Break | BYTE | B\#16\#80 | Maximum velocity (hexadecimal) $=$ 5 V |
| 11.0 | --- | BYTE | B\#16\#0 | Unused |
| 12.0 | Control byte | BYTE | B\#16\#0 | Control bits for positioning |
| 13.0 | Checkback byte | BYTE | B\#16\#0 | Checkback status bits from position- <br> ing |
| 14.0 | Refp1 | DINT | L\#25 | Reference point for BERO (edge of <br> paint can) $=50$ mm |
| 18.0 | Refp2 | DINT | L\#0 | Reference point when filling |

Statement Section OB 1

You enter the following STL user program in the statement section of OB 1:

STL (OB 1)
Explanation

| Network 1 |  |  |
| :---: | :---: | :---: |
| Call positioning |  |  |
| CALL SFB 39 , DB59 |  |  |
| DEST_VAL :=DB2.DBD0 |  |  |
| REF_VAL :=DB2.DBD4 |  |  |
| SWITCH_OFF_DIFF : =DB2 . DBW8 |  |  |
| BREAK $\quad=\mathrm{DB2}$. DBB10 |  |  |
| POS_MODE2 :=DB2.DBX12.0 |  |  |
| POS_MODE1 |  |  |
| REF_ENABLE $\quad=\mathrm{DB} 2 . \mathrm{DBX12.1}$ |  |  |
| POS_STRT :=DB2.DBX12.2 |  |  |
| SET_POS :=DB2.DBX12.3 |  |  |
| ACTUAL_POS |  |  |
| POS_READY :=DB2.DBX13.0 |  |  |
| REF_VALID :=DB2.DBX13.1 |  |  |
| POS_VALID :=DB2.DBX13.2 |  |  |
| A BR |  |  |
|  | DB2.DBX | 13.7 |
|  | A DB2.DBX | 12.6 |
|  | JC m1 |  |

Setting up the first paint can

| A | I 0.0 |  |
| :---: | :---: | :---: |
| AN | I 0.1 |  |
| AN | DB2. DBX | 12.4 |
| = | DB2.DBX | 12.0 |
| S | DB2.DBX | 12.1 |
| L | DB2. DBD | 14 |
| T | DB2.DBD | 4 |
| A | DB2.DBX | 13.1 |
| FP | DB2.DBX | 12.5 |
| S | DB2.DBX | 12.4 |
| AN | I |  |
| R | DB2.DBX | 12.4 |

## Automatic mode

| AN | I 0.1 |  |
| :--- | :--- | ---: |
| AN | DB2.DBX | 12.7 |
| BEC |  |  |
| L | DB2.DBD | 14 |
| T | DB2.DBD | 4 |
| AN | DB2.DBX | 12.2 |
| S | DB2.DBX | 12.2 |
| S | DB2.DBX | 12.1 |
| S | DB2.DBX | 12.7 |
| BEC |  |  |
| A | DB2.DBX | 13.0 |
| S | DB2.DBX | 12.6 |
| R | DB2.DBX | 12.2 |
| R | DB2.DBX | 12.1 |
| BEU |  |  |

Destination pos. (center of paint can $=300 \mathrm{~m}$ )
Reference point for BERO
Switch-off difference
Maximum velocity
Jog mode forward
Control signal: Evaluate reference point switch
Start positioning operation
Control signal: Accept REF_VAL as new actual
value
Checkback signal: Pos. op./jog mode terminated
Checkback signal: Referencepoint switch reached
Checkback signal: Synchronizationhastakenplace
Scanning the BR bit (= ENO at SFB 39) for
error evaluation
Paint can being filled

Momentary-contact switch: "Set up"
Interlock with automatic mode
Auxiliary memory marker for ref. point reached Start jog mode forward
Evaluate reference point switch
Load reference point for BERO (edge of
paint can) as new reference point
Reference point reached
Edge evaluation
Set memory marker for reference point reached
Reset auxiliary marker if momentary-contact switch "Set up" released
If automatic switch not set and automatic
auxiliary marker not set,
then end
Load reference point for BERO
(edge of paint can) as new reference point
Set: Start positioning operation
Set control signal: REF_ENABLE
Set auxiliary marker for targeted terminating
of automatic mode
If positioning operation terminated,
then set marker for filling paint can
Reset: Start positioning operation
Reset control signal: Evaluate reference
point switch

If automatic switch not set and automatic auxiliary marker not set,
then end
load reference point for BERO
(edge of paint can) as new reference point
Set: Start positioning operation

Set control signal: REF_ENABLE
Set auxiliary marker for targeted terminating of automatic mode
If positioning operation terminated,
then set marker for filling paint can
Reset: Start positioning operation point switch

| STL (OB 1) | (Continued) | Explanation |
| :---: | :---: | :---: |
| Filling the container, accept reference point |  |  |
| m1: NOP | 0 |  |
| L | DB2.DBD 18 | Load reference point |
| T | DB2.DBD 4 | for filling as new reference point |
| A | T 1 | If time out and |
| A ${ }^{\text {l }}$ |  |  |
| $\bigcirc$ | $\begin{array}{ll}\text { I } & 0.7\end{array}$ | checkback signal: Paint can full |
| ON | DB2.DBX 13.1 | or if no paint can found |
| ) |  |  |
| R | $2 \quad 4.0$ | then close filling valve |
| = | DB2.DBX 12.3 | Set reference point |
| R | DB2.DBX 12.6 | Reset marker for filling paint can |
| R | DB2.DBX 12.7 | Reset auxiliary marker for automatic |
| L | S5T\#500MS | Waiting time till drive standstill |
| A | DB2.DBX 12.6 |  |
| SD | T 1 |  |
| A | T 1 | If time out |
| A | DB2 .DBX 13.1 | and BERO detected paint can, |
| S | $2 \quad 4.0$ | open filling valve |

### 6.10.3 Positioning a Worktable

## Introduction

Task

## Switching the <br> System On

The technical implementation of the example in Section 6.1.2 is shown below.

Let's take again the example of the worktable which is used to position workpieces.

One or more machining operations are performed at a machining point. For this purpose, the worktable is stopped at the relevant position until machining of the workpiece has been completed. The worktable is moved via an axis.

After switching the system on, the Positioning integrated function is synchronized as follows:
Regardless of the actual position, the worktable is moved backward in jog mode via the user program until it reaches the left limit switch. The motor is switched off.

Following this, the user program controls the worktable in jog mode forward until the right limit switch is reached. On the way, the reference point switch (BERO) is passed and the Positioning integrated function is synchronized. The motor is switched off.

Following this, the positioning operation is started via the user program.

The positioning operation is started via the user program. The worktable travels forward to each of 3 destination points lying in a line at which the workpiece is to be machined. The motor is switched off following the last machining operation.

## New Positioning Operation

After the motor has been switched off, the workpiece can be removed. The operator lays a new workpiece on the table and starts a new positioning operation via the user program (automatic mode).

Wiring
Figure 6-31 shows the technology schematic and the wiring of the example. The power section is a contactor circuit.


Figure 6-31 Positioning a Worktable

Function of the In- Table 6-28 lists the functions of the inputs and outputs for the example. puts and Outputs

Table 6-28 Switching the Inputs and Outputs (Example 3)

| Terminal | Input/ <br> Output | Function in the Example |
| :---: | :---: | :--- |
| 2 | I 126.0 | Encoder track A |
| 3 | I 126.1 | Encoder track B |
| 4 | I 126.2 | Reference point switch |
| 21 | L+ | Supply voltage |
| 22 | Q 124.0 | Creep speed |
| 23 | Q 124.1 | Rapid traverse |
| 24 | Q 124.2 | Backward direction |

Table 6-28 Switching the Inputs and Outputs (Example 3)

| Terminal | Input/ <br> Output | Function in the Example |
| :---: | :---: | :--- |
| 25 | Q 124.3 | Forward direction |
| 30 | M | Ground |
| Connection of CPU voltage supply | L+ | Supply voltage |
| Connection of CPU voltage supply | M | Ground |

## Assigning mm Distance to Pulses (Distance Increments)

The incremental encoder supplies 250 pulses per revolution. 1 revolution of the incremental encoder corresponds to 10 revolutions of the motor. The incremental encoder therefore supplies 25 pulses per motor revolution. The worktable moves 3 mm per motor revolution.
$3 \mathrm{~mm}: 25$ pulses $=0.12 \mathrm{~mm}$
One pulse is accordingly assigned a distance of 0.12 mm . 1 pulse corresponds to 1 distance increment.

In the example, the reference point switch is to be evaluated at each positioning operation. For this reason, it is located at the center of the distnace to be traversed.

In Figure 6-32, you can see the assignment of distances/pulses to the limit switches and the reference point switch (BERO). Conversion of mm to pulses (distance increments) is as follows:
$500 \mathrm{~mm}: 0.12 \mathrm{~mm}=4167$ pulses (distance increments)
$1000 \mathrm{~mm}: 0.12 \mathrm{~mm}=8333$ pulses (distance increments)


Figure 6-32 Assignment of Distances/Pulses to the Switches

## Distance to be <br> Covered

In the example, the worktable approaches 3 different destination positions one after the other:

| Destination <br> Position ... | Conversion for Specifying to SFB 39 |
| :--- | :---: |
| 1: 750 mm | $750 \mathrm{~mm}: 0.12 \mathrm{~mm}$ per pulse $=\mathbf{6 2 5 0}$ pulses (distance increments) |
| 2: 400 mm | $400 \mathrm{~mm}: 0.12 \mathrm{~mm}$ per pulse $=\mathbf{3 3 3 3}$ pulses (distance increments) |
| 3: 100 mm | $100 \mathrm{~mm}: 0.12 \mathrm{~mm}$ per pulse $=\mathbf{8 3 3}$ pulses (distance increments) |

You must parameterize the stopping distance in the example. The stopping distance is the distance traversed at creep speed up to the switch-off point. This distance is set at 60 mm in the example.
$60 \mathrm{~mm}: 0.12 \mathrm{~mm}$ per pulse $=\mathbf{5 0 0}$ pulses (distance increments)

You parameterize the CPU with STEP 7 as follows:

Table 6-29 Parameters for Positioning a Worktable

| Parameter | Input | Explanation |
| :--- | :--- | :--- |
| Drive control via | 4 analog outputs <br> (AQs) | The motor is driven via a contactor circuit in <br> 2 speeds, rapid traverse and creep speed. |
| Acceleration dis- <br> tance to maximum <br> velocity (= stop- <br> ping distance) | 500 | You define the distance in distance incre- <br> ments in which the system accelerates to <br> maximum velocity or traverses at creep <br> speed. |
| Evaluation of the <br> reference point <br> switch in the case <br> of | Forward direc- <br> tion | The reference point switch is evaluated <br> when it is reached in the forward direction. |
| Number of the <br> instance DB | 59 | Instance DB for the example (default value) |
| Automatic updating <br> at the cycle control <br> point | Activated | The instance DB is updated at each cycle <br> control point. |

## Determining the Switch-Off Difference

## Instance DB of SFB 39

## Initialization of SFB 39

To ensure that the destination position is reached as accurately as possible, you must:

1. Specify switch-off difference 0 to SFB 39 via the user program
2. Move the worktable once via the Positioning integrated function
3. Measure the difference between the actual destination position reached and the specified destination position
4. Specify this difference as the switch-off difference to SFB 39

In the example, the data are stored in instance DB 59.

Figure 6-33 shows SFB 39 with initialized parameters from DB 60 for setting up the worktable (jog mode backward).


Figure 6-33 Initialization of SFB 39 at Start-Up (3)

Below is the user program for the example. It has been created with the $S T L$ Editor in STEP 7.

DB 60 The data for SFB 39 are stored in DB 60. The DB has the following structure:

Table 6-30 Example 3: Positioning, Structure of DB 60

| Address | Name | Type | Starting value | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 0.0 |  | STRUCT |  |  |
| +0.0 | DEST_VAL | DINT | L\#0 | Always contains the currently valid destination position for drive (SW1, SW2 or SW3) |
| +4.0 | REF_VAL | DINT | L\#4167 | Reference point for $\mathrm{BERO}=500 \mathrm{~mm}$ |
| +8.0 | SWITCH_OFF_DIFF | INT | 0 | Switch-off difference (calculated at startup) |
| +10.0 | ACTUAL_POS | DINT | L\#0 | Output: Current actual value |
| +14.0 | Control byte | BYTE | B\#16\#0 | Control bits for positioning |
| +15.0 | Checkback byte | BYTE | B\#16\#0 | Checkback status bits from positioning |
| +16.0 | Istw1 | DINT | L\#0 | Old actual value |
| +20.0 | Sw1 | DINT | L\# 6250 | Destination position for 1st machining step ( 750 mm ) |
| +24.0 | Sw2 | DINT | L\#3333 | Destination position for 2nd machining step ( 400 mm ) |
| +28.0 | Sw3 | DINT | L\#833 | Destination position for 3rd machining step ( 100 mm ) |
| +32.0 | SK1 | WORD | w\#16\#0 | Auxiliary marker for sequencer |
| +34.0 | SK2 | WORD | W\#16\#0 | Counter for jump-to list |
| $=36.0$ |  | END_STRUCT |  |  |

Statement Section You enter the following user program in the statement section of OB 1: OB 1



| L (OB 1) (Continued) |  |  |  | Explanation |
| :---: | :---: | :---: | :---: | :---: |
| Automatic mode |  |  |  |  |
|  | A | I 0 |  | Momentary-contact switch for Automatic |
|  | FP | DB60.DBX | 32.3 | Edge evaluation for momentary-contact switch |
|  | AN | I 0 |  | Interlock with "Setup" |
|  | AN | DB60.DBX | 32.0 |  |
|  | S | DB60.DBX | 32.2 | Set memory bit for "Automatic" sequencer |
|  | AN | DB60.DBX | 32.2 | End if not "Automatic" |
|  | BEC |  |  |  |
|  | L | DB60. DBW | 34 | Counter for jump-to list |
|  | JL | m9 |  | Call jump-to list |
|  | JU | m10 |  | Load 1st destination position |
|  | JU | m11 |  | Load 2nd destination position |
|  | JU | m12 |  | Load 3rd destination position |
| m9: | L | 0 |  |  |
|  | T | DB60. DBW | 34 |  |
|  | BEU |  |  |  |
| m10: | NOP | 0 |  |  |
|  | L | DB60.DBD | 20 | Load destination position for 1st machining step |
|  | T | DB60.DBD | 0 | Save it as destination position for drive |
|  | AN | DB60.DBX | 14.3 | Start positioning operation |
|  | S | DB60.DBX | 14.3 |  |
|  | BEC |  |  |  |
|  | ON | DB60.DBX | 15.0 | If positioning operation not yet terminated |
|  | ON | DB60.DBX | 14.4 | or drive running |
|  | BEC |  |  |  |
|  |  | 1 |  | Next step |
|  | T | DB60. DBW | 34 |  |
|  | SET |  |  |  |
|  | R | DB60. DBX | 14.3 | Reset control signal for start positioning operation |
|  | S | DB60.DBX | 14.5 | Start machining |
|  | BEU |  |  |  |
| m11: | NOP | 0 |  |  |
|  | L | DB60.DBD | 24 | Load destination position for 2ndmachining step |
|  | T | DB60.DBD | 0 | Save it as destination position for drive |
|  | AN | DB60.DBX | 14.3 | Start positioning operation |
|  | S | DB60.DBX | 14.3 |  |
|  | BEC |  |  |  |
|  | ON | DB60.DBX | 15.0 | If positioning operation not yet |
|  | ON | DB60.DBX | 14.4 | terminated or drive running |
|  | BEC |  |  |  |
|  | L | 2 |  | Next step |
|  | T | DB60. DBW | 34 |  |
|  | SET |  |  |  |
|  | R | DB60.DBX | 14.3 | Reset control signal for start positioning operation |
|  | S | DB60. DBX | 14.5 | Start machining |
|  | BEU |  |  |  |


| STL (OB 1) (Continued) |  |  |  | Explanation |
| :---: | :---: | :---: | :---: | :---: |
| m12 : | NOP | 0 |  |  |
|  | L | DB60. DBD | 28 | Load destination position for 3rdmachining step |
|  | T | DB60. DBD | 0 | Save it as destination position for drive |
|  | AN | DB60. DBX | 14.3 | Start positioning operation |
|  | S | DB60. DBX | 14.3 |  |
|  | BEC |  |  |  |
|  | ON | DB60.DBX | 15.0 | If positioning operation not yet terminated |
|  | ON | DB60.DBX | 14.4 | or drive running |
|  | BEC |  |  |  |
|  | L | 0 |  | Next step |
|  | T | DB60. DBW | 34 |  |
|  | SET |  |  |  |
|  | R | DB60. DBX | 14.3 | Reset control signal for start positioning operation |
|  | S | DB60. DBX | 14.5 | Start machining |
|  | R <br> BEU | DB60.DBX | 32.2 | Terminate automatic mode |
| Machining |  |  |  |  |
| m13: | NOP | 0 |  | Simulation of machining via waiting time |
|  | A | $\begin{array}{ll} T & 2 \end{array}$ |  |  |
|  | R | DB60.DBX | 14.5 | Terminate machining |
|  | L | S5T\#2S |  |  |
|  | A | DB60.DBX | 14.5 |  |
|  | SD | T 2 |  |  |

# Technical Specifications of the Frequency Meter Integrated Function 

Technical<br>Specifications

In Table A-1 you will find the technical specifications for the Frequency Meter integrated function.

Table A-1 Technical Specifications for Frequency Meter Integrated Function

| No. of frequency meters | 1 |
| :---: | :---: |
| Measuring range | 32 bits: from 0 to 10000000 mHz |
| Sample times | $0.1 \mathrm{~s} / 1 \mathrm{~s} / 10 \mathrm{~s}$ |
| Measured signal | - Frequency limit: 10 kHz <br> - Pulse time: $\geq 50 \mu \mathrm{~s}$ <br> - Pulse interval: $\geq 50 \mu \mathrm{~s}$ <br> - Signal state HIGH: $\geq 15 \mathrm{~V}$ <br> - Signal state LOW: $\leq 5 \mathrm{~V}$ |
| Digital inputs of the integrated inputs/outputs | Measurement: <br> - CPU 312 IFM I 124.6 (terminal 8) <br> - CPU 314 IFM I 126.0 (terminal 2) |
| DC supply voltage | - CPU 312 IFM 24 V DC (terminal 18) <br> - CPU 314 IFM 24 V DC (connected at CPU voltage supply) |
| Ground | - CPU 312 IFM reference potential of supply voltage (terminals 19/20; internally jumpered) <br> - CPU 314 IFM reference potential of supply voltage (connected at CPU voltage supply) |
| System function block | SFB 30 |

Figure A-1 shows the properties of the measured signal:


Figure A-1 Properties of the Measured Signal

# Technical Specifications of the Counter Integrated Function 

Technical<br>Specifications

In Table B-1 you will find the technical specifications for the Counter integrated function.

Table B-1 Technical Specifications for Counter Integrated Function

| No. of counters | 1 |
| :---: | :---: |
| Counting range | 32 bits: from -2147483648 to 2147483647 |
| Counting direction | Up and down |
| Counting pulse | - Frequency limit: 10 kHz <br> - Pulse time: $\geq 50 \mu \mathrm{~s}$ <br> - Pulse interval: $\geq 50 \mu \mathrm{~s}$ <br> - Signal state HIGH: $\geq 15 \mathrm{~V}$ <br> - Signal state LOW: $\leq 5 \mathrm{~V}$ |
| Digital inputs of the integrated inputs/outputs | CPU 312 IFM: <br> - Up: I 124.6 (terminal 8) <br> - Down: I 124.7 (terminal 9) <br> - Direction: I 125.0 (terminal 10) <br> - Hardware start/stop: I 125.1 (terminal 11) CPU 314 IFM: <br> - Up: I 126.0 (terminal 2) <br> - Down: I 126.1 (terminal 3) <br> - Direction: I 126.2 (terminal 4) <br> - Hardware start/stop: I 126.3 (terminal 5) |
| DC supply voltage | - CPU 312 IFM 24 V DC (terminal 18) <br> - CPU 314 IFM 24 V DC (connected at CPU voltage supply) |
| Ground | - CPU 312 IFM reference potential of supply voltage (terminals 19/20; internally jumpered) <br> - CPU 314 IFM reference potential of supply voltage (connected at CPU voltage supply) |

Table B-1 Technical Specifications for Counter Integrated Function

| Digital outputs of the integrated inputs/outputs | - Digital output A: Q 124.0 <br> - CPU 312 IFM (terminal 12) <br> - CPU 314 IFM (terminal 22) <br> - Digital output B: Q 124.1 <br> - CPU 312 IFM (terminal 13) <br> - CPU 314 IFM (terminal 23) |
| :---: | :---: |
| System function block | SFB 29 |

Figure B-1 shows the properties of the counting pulses:


Figure B-1 Properties of the Counting Pulse

# Technical Specifications of the Counter A/B Integrated Function (CPU 314 IFM) 

Technical<br>Specifications

Table C-1 lists the technical specifications of the Counter A/B integrated function.

Table C-1 Technical Specifications of the Counter A/B Integrated Function

| Number of counters | 2 |
| :---: | :---: |
| Count range | 32 bits: from -2147483648 to 2147483647 |
| Count direction | Up and down |
| Counter pulse | - Limit frequency: $\mathbf{1 0} \mathbf{~ k H z}$ <br> - Pulse duration: $\geq 50 \mu \mathrm{~s}$ <br> - Pulse-pause: $\geq 50 \mu \mathrm{~s}$ <br> - Signal state HIGH: $\geq 15 \mathrm{~V}$ <br> - Signal state LOW: $\leq 5 \mathrm{~V}$ |
| Digital inputs of the integrated inputs/outputs | - Counter A: Up (up/down): I 126.0 (Special terminal 2) <br> - Counter A: Down (direction): I 126.1 (Special terminal 3) <br> - Counter B: Up (up/down): I 126.2 (Special terminal 4) <br> - Counter B: Down (direction): I 126.3 (Special terminal 5) |
| DC supply voltage | 24 V DC (connected to CPU voltage supply) |
| Ground | Reference potential of supply voltage (connected to CPU voltage supply) |
| Digital outputs of the integrated inputs/outputs | - Counter A: Q 124.0 (Digital 22 terminal) <br> - Counter B: Q 124.1 (Digital 23 terminal) |
| System function block | SFB 38 |

Properties of the
Counter Pulses
Figure C-1 shows the properties of the counter pulses.


Figure C-1 Properties of the Counter Pulses

# Technical Specifications of the Positioning Integrated Function (CPU 314 IFM) 

Technical<br>Specifications

Table D-1 lists the technical specifications of the Positioning integrated function.

Table D-1 Technical Specifications of the Positioning Integrated Function

| Digital inputs of the integrated inputs/outputs | - Track A: I 126.0 (Special 2 terminal) <br> - Track B: I 126.1 (Special 3 terminal) <br> - Reference point switch: I 126.2 (Special 4 terminal) |
| :---: | :---: |
| DC supply voltage | 24 V DC (connected to CPU voltage supply) |
| Ground | Reference potential of supply voltage (connected to CPU voltage supply) |
| $\mathrm{M}_{\text {ANA }}$ | Analog ground (Analog 20 terminal) |
| Digital outputs of the integrated inputs/outputs | - Creep speed: Q 124.0 <br> (Digital 22 terminal) <br> - Rapid traverse: Q 124.1 (Digital 23 terminal) <br> - Backward direction Q 124.2 (Digital 24 terminal) <br> - Forward direction Q 124.3 (Digital 25 terminal) |
| Analog output of the integrated inputs/outputs | - Speed <br> - Voltage $\mathrm{AQ}_{\mathrm{U}} 128$ <br> (Special 6 terminal) <br> - Current $\mathrm{AQ}_{\mathrm{I}} 128$ (Special 7 terminal) |
| System function block | SFB 39 |
| Encoder inputs, track A and track B |  |
| Position detection | - Incremental |
| Signal voltage/current | - Asymmetrical inputs: $24 \mathrm{~V} /$ typ. 4 mA |
| Input frequency and cable length for asymmetrical encoders with 24 V supply | - Max. 10 kHz at 100 m shielded cable length |

Table D-1 Technical Specifications of the Positioning Integrated Function

| Input signals | - Incremental: 2 pulse trains shifted by $90^{\circ}$ Zero mark signal |
| :---: | :---: |
| Counter pulse | - Limit frequency: 10 kHz <br> - Pulse duration: $\geq 50 \mu \mathrm{~s}$ <br> - Pulse-pause: $\geq 50 \mu \mathrm{~s}$ <br> - Signal state HIGH: $\geq 18 \mathrm{~V}$ <br> - Signal state LOW: $\leq 5 \mathrm{~V}$ |

## Pulse Evaluation

The Positioning integrated function of the CPU 314 IFM performs single evaluation of the encoder counter pulses. Single evaluation means, only the rising edge of pulse train A is evaluated.
Figure D-1 shows the pulse evaluation and the properties of the counter pulses.


Figure D-1 Pulse Evaluation and Properties of the Counter Pulses
$\begin{array}{ll}\text { Suitable Incremen- } & \begin{array}{l}\text { You can connect the following Siemens incremental encoder to the } \\ \text { tal Encoders }\end{array} \\ \text { CPU } 314 \text { IFM: }\end{array}$

- Incremental encoder $\mathrm{U}_{\mathrm{p}}=24 \mathrm{~V}$, HTL, Order number: 6FX 2001-4

Terminal Connection Model Encoder 6FX 2001-4


Figure D-2 Terminal Connection Model for Incremental Encoder 6FX 2001-4

## Troubleshooting

## Faults

Table E-1 provides tips on possible faults and how to eliminate them.

Table E-1 Troubleshooting

| Fault | Fault Cause | Remedy |
| :---: | :---: | :---: |
| The integrated function no longer operates correctly. <br> There is a communication error (the connection may have been broken). | The frequency limit was exceeded. | Eliminate the cause of the fault |
| The CPU switches to STOP. <br> Entry in diagnostics buffer: $3501_{\mathrm{H}}$ (cycle time monitoring) | The cycle load generated by the integrated function is too high. <br> Too many process interrupts have been triggered by the integrated function. | Increase the cycle monitoring time Eliminate the cause of the fault |
| The CPU switches to STOP. <br> Entry in diagnostics buffer: $35 \mathrm{~A} 3_{\mathrm{H}}$ (data block access error) | The no. of the instance DB in the user program does not match the number configured with STEP 7. | Standardize the no. of the instance DB |
| The fault occurs on operating mode changes or at the cycle checkpoint. | The instance DB does not exist, is not long enough or is write-protected. | Create instance DB, change the length or cancel the write protection |
| SFB output parameter $\mathrm{ENO}=0$, i.e. the SFB was not executed or was executed with an error. | Input parameter EN $=0$ on SFB call. | No error or change user program |
|  | The no. of the instance DB in the user program does not match the number configured with STEP 7. | Standardize the no. of the instance DB |
|  | The instance DB does not exist, is not long enough or is write-protected. | Create instance DB, change the length or cancel the write protection |
|  | The integrated function was not activated with STEP 7. | Reconfigure the integrated function with STEP 7. |

## SIMATIC S7 Reference Literature

Introduction
This Appendix contains references to manuals that you require for starting up and programming the S7-300.

You will also find information on technical books containing information related to the S7-300.

Manuals for Programming and
Starting Up
You will need the manuals listed in Table F-1 in order to program and start up an S7-300.

Table F-1 Manuals for Programming and Starting Up of the S7-300

| Manual | Contents |
| :---: | :---: |
| Manual <br> Standard Software for S7 and M7, STEP 7 | - Installing and starting up STEP 7 on a PC/programming device <br> - Handling STEP 7 with the following contents: <br> - Processing projects <br> - Configuring and assigning parameters to the hardware <br> - Assigning symbolic names for user program <br> - User program in STL/LAD (overview) <br> - Defining data types, data blocks <br> - Configuring communication between several CPUs <br> - Configuring links <br> - Loading, storing and deleting a user program in the CPU or the programming device <br> - Monitoring and controlling the user program (e.g. variables) <br> - Monitoring and controlling the CPU (e.g. operating state, memory reset, compress memory, protection levels) |
| Manuals <br> Statement List (STL) for S7-300 and S7-400, <br> Programming or <br> Ladder Logic (LAD) for S7-300 and S7-400, Programming | - Fundamentals for working with STL/LAD (for example, STL/LAD structure, number formats, syntax) <br> - Description of all operations in STEP 7 (with program examples) <br> - Description of the various types of addressing in STEP 7 (with examples) <br> - Description of the CPU-internal registers |
| Reference Manual System Software for S7-300 and S7-400, System and Standard Functions | - Description of all standard functions integrated in STEP 7 <br> - Description of all system functions integrated in the CPUs <br> - Description of all organization blocks integrated in the CPUs |

## SIMATIC S7 Reference Literature, Continued

Table F-1 Manuals for Programming and Starting Up of the S7-300, Continued

| Manual | Contents |
| :---: | :---: |
| Programming manual System Software for S7-300 and S7-400, Program Design | - Procedure for designing user programs <br> - Principle of operation of the CPUs (for example, memory concept, access to inputs and outputs, addressing, blocks, data types, data management) <br> - Description of the STEP 7 data management <br> - Using STEP 7 data types <br> - Using linear and structured programming <br> - Overview for data interchange between programmable modules <br> - Setting system parameters (e.g. time-of-day functions, module parameters and access protection) <br> - Using test and diagnostic functions of the CPUs in the user program (for example, error OBs, status word) |
| Manual <br> Standard Software for <br> S7, Converting S5 <br> Programs | Gives information on converting STEP 5 programs to STEP 7 <br> - Working with the S5/S7 converter <br> - Rules for conversion <br> - Use of converted STEP 5 standard function blocks in STEP 7 |
| $\begin{aligned} & \text { Manual } \\ & P G 7 x x \end{aligned}$ | - Description of the programming device hardware <br> - Connecting the programming device to various other devices (for example, programmable controllers, further programming devices, printers) <br> - Starting up the programming device |

# Using the Integrated Functions with the OP3 

| Introduction | The OP3 enables operator interface functionality with standard displays and the use of the integrated functions of the CPU 312 IFM and CPU 314 IFM. |  |  |
| :---: | :---: | :---: | :---: |
| In this Chapter | Section | Contents | Page |
|  | G. 1 | Introduction | G-2 |
|  | G. 2 | Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3 | G-3 |
|  | G. 3 | System Configuration for Installation and Operation | G-4 |
|  | G. 4 | Selecting and Using Standard IF Displays | G-6 |
|  | G. 5 | Using the Standard IF Displays in ProTool/Lite | G-13 |
|  | G. 6 | Accessing the Instance DB from OP3 and SFB | G-19 |

## G. 1 Introduction

## Standard <br> Configuration/ <br> Standard Displays

## Features of the <br> Standard <br> Configuration

A standard configuration for the OP3 is supplied with this manual (on diskette).

This standard configuration contains displays for accessing the integrated functions of the CPU 312 IFM and CPU 314 IFM.

These displays are referred to in this appendix as the standard IF displays.

The standard configuration is ready to use. When it has been installed and transferred to the OP3, you can start using the integrated functions immediately.

With ProTool/Lite you can change the standard configuration or the standard displays to suit your application.

The default setting of the integrated functions must not be changed.

## G. 2 Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3

## Requirements

## Installation Diskette

```
Installing the
Standard Configuration
```

Transferring the Configuration to the OP

Before you can install the standard configuration on the Programming device/PC and subsequently transfer it to the OP3, the following requirements must be met:

- ProTool/Lite must be installed on the configuring computer (programming device/PC)
- The OP must be connected to a 24 V power supply
- The configuring computer (programming device/PC) must be linked to the OP. The connection is made via the MPI interface (see G. 3 for possible arrangements).

The diskette supplied contains a standard configuration comprising one display each for accessing the relevant integrated function of the S7-300.

The name of the standard configuration is: IF_BILD.PDB.

Procedure:

1. Insert the diskette in one of the $\mathrm{PC} /$ programming device drives
2. Copy the file IF_BILD.PDB into the directory Prolite/Standard
3. Call up ProTool/Lite and open the configuration

Transfer the configuration to the OP3 as described in the ProTool/Lite user manual.

## G. 3 System Configuration for Installation and Operation

## Connecting a Configuring Computer to the OP3

The configuring computer must be linked to the OP3 to transfer the standard configuration to it.
The link can be made in the following ways:

- Direct connection of the configuring computer to the OP.
- The OP3 is connected to a CPU 312 IFM/CPU 314 IFM. The configuration computer is connected to the CPU via a spur line and then disconnected again after the standard configuration has been transferred.
- The OP3 and the configuring computer are both part of a multiple-node MPI network configuration.

The following requirements must be met before the S7-300 integrated functions can be accessed:

- The integrated functions have been parameterized with STEP 7 and are ready for use (default settings).
- The standard configuration with the displays for the integrated functions must be loaded on the OP3.
- The OP3 is connected to the CPU via the MPI (multipoint interface).

You will find detailed information on the connection facilities and the structure of an MPI network in the OP3 manual or in the manual S7-300 Programmable Controller, Installation and Hardware.

Further
Information

## Requirements for Operation

## System Configuration of OP3 and S7 Programming Device/PC

The following arrangements for configuring and operation are intended as examples to illustrate the connection possibilities. You will find more detailed information in the relevant manuals.


Figure G-1 Point-to-Point Connection (Setup for Configuring the OP3)


Figure G-2 Multipoint Connection

## G. 4 Selecting and Using Standard IF Displays

Frame of Reference

General Operations

The following descriptions of how to select and use the standard IF displays are based on the standard configuration supplied.

The descriptions deal only with special operator actions in connection with the standard IF displays.

General operations, such as entering values, cancelling entries, etc., are described in the OP3 manual.

| Section | Contents | Page |
| :---: | :--- | :---: |
| G.4.1 | Selecting the Standard IF displays | G-7 |
| G.4.2 | Using the Standard Display for the Frequency Meter IF | G-8 |
| G.4.3 | Using the Standard Display for the Counter IF | G-9 |
| G.4.4 | Using the Standard Display for the Counter A or B IF | G-10 |
| G.4.5 | Using the Standard Display for the Positioning IF | G-11 |

## G.4.1 Selecting the Standard IF Displays

Operating Hierarchy

Figure G-3 shows the position of the standard IF displays in the standard configuration.


Figure G-3 Operating Hierarchy

## Selecting the <br> Standard IF Displays

The integrated functions are accessed via the standard IF displays. To select one of these displays, proceed as follows:

Table G-1 Selecting the Standard IF Displays

| Step | Description | Operator Action on OP3 |
| :--- | :--- | :---: |
| 1 | Choose "Displays" in the initial <br> display. The list of displays appears. | Select one of the standard IF dis- <br> plays from the list of displays |
| 2 | Call up the display | $\boxed{+}, ~+~+~$ |

## G.4.2 Using the Standard Display for the Frequency Meter IF

## Structure

The standard display for the Frequency Meter IF has the following structure:
$\square$
Figure G-4 Structure of the Standard Display for the Frequency Meter IF

The following table shows the meanings of the individual display items and the possible operator actions on the OP.

Table G-2 Standard Display for the Frequency Meter IF

| Item | Meaning/Function | Operator Action on OP |
| :--- | :--- | :--- |
| Frequency | Current frequency display | - |
| Comparison val. LL <br> current | Display of current comparison <br> value for LL comparator | - |
| Comparison val. LL <br> new | Display/entry of new comparison <br> value for LL comparator | Entry: <br> $0 \ldots 10.000$ |
| Comparison value <br> UL <br> current | Display of current comparison <br> value for UL comparator | - |
| Comparison value <br> UL <br> new | Display/entry of new comparison <br> value for UL comparator | Entry: <br> $0 \ldots 10.000$ |

## G.4.3 Using the Standard Display for the Counter IF

## Structure

The structure of the standard display for the Counter IF is as follows:

| IF Counter | $d$ |
| :---: | :---: |
| Actual value: |  |
| Software Start/Stop <br> F1=Start F3=Stop |  |
| Start value: $\square$ | $\sqrt{6}$ |
| Comparison value A current: |  |
| Comparison value A new: |  |
| Comparison value B current: |  |
| Comparison value $B$ new: $\square$ |  |

Figure G-5 Structure of the Standard Display for the Counter IF

## Key to Display Items

The following table shows the meanings of the individual display items and the possible operator actions on the OP.

Table G-3 Standard Display for the Counter IF

| Item | Meaning/Function | Operator Action on OP |
| :--- | :--- | :--- |
| Actual value | Current counter status display | - |
| Software Start/Stop | Starting/stopping counter <br> Display of the current start/stop <br> status | Selection list: <br> Start or Stop* |
| Start value | Display/entry of the start value <br> from which the counter is to start <br> counting | Entry: <br> $-2,147,483,648 ~ t o ~$ <br> $+2,147,483,647 ~$ |
| Comparison value A <br> current | Display of current comparison <br> value for comparator A | - |
| Comparison value A <br> new | Display/entry of a new comparison <br> value for comparator A | Entry: $-2,147,483,648$ to <br> $+2,147,483,647$ |
| Comparison value B <br> current | Display of current comparison <br> value for comparator B | - |
| Comparison value B <br> new | Display/entry of a new comparison <br> value for comparator B | Entry: $-2,147,483,648$ to <br> $+2,147,483,647$ |

* You can also start the counter with the "F1" key and stop it with the "F3" key in each display item.


## G.4.4 Using the Standard Display for the Counter A/B IF

## Structure

The standard display for the Counter A/B IF has the following structure:


Figure G-6 Structure of the Standard Display for the Counter A/B IF

## Key to Display Items

Table G-4 shows the meanings of the individual display items and the possible operator actions on the OP:

Table G-4 Standard Display for the Counter A/B IF

| Item | Meaning/Function | Operator Action on OP |
| :--- | :--- | :--- |
| Actual value | Display of the current counter <br> value | - |
| Enable | Starting or stopping the counter <br> Display of the current start/stop <br> status | Selection list: <br> Start or Stop* |
| Reset | Reset counter to parameterized re- <br> set value | Selection list: <br> Yes or No |
| Comparison value <br> current | Display of current comparison <br> value | - |
| Comparison value <br> new | Display/entry of a new comparison <br> value | Entry: <br> $-2,147,483,648 ~ t o ~$ <br> $+2,147,483,647$ |

[^8]
## G.4.5 Using the Standard Display for the Positioning IF

## Structure

The standard display for the Positioning IF has the following structure:


Figure G-7 Structure of the Standard Display for Positioning IF

## Key to Display Items

Table G-5 shows the meanings of the individual display items and the possible operator actions on the OP:

Table G-5 Standard Display for the Positioning IF

| Item | Meaning/Function | Operator Action on OP |
| :--- | :--- | :--- |
| Actual position | Display of current actual position | -- |
| Synchronization | Indication of whether actual position is <br> valid | -- |
| Jog backward | Starting and stopping jog backward | Selection list: <br> Start or Stop* |
| Jog forward | Starting and stopping jog forward | Selection list: <br> Start or Stop* |
| Destination <br> position | Entry of destination position | Entry: <br> $-2,147,483,648 ~ t o ~$ <br> $+2,147,483,647$ |
| Positioning | Starting or terminating of the position- <br> ing operation | Selection list: <br> Start or Stop |
| Reference point | Entry of a new reference point | Entry: <br> $-2,147,483,648 ~ t o ~$ <br> $+2,147,483,647 ~$ |

## Table G-5 Standard Display for the Positioning IF

| Item | Meaning/Function | Operator Action on OP |
| :--- | :--- | :--- |
| Set actual posi- <br> tion | Accept new reference point as new ac- <br> tual position | Selection list: <br> Yes or no |

* In each display item, you can also:
start jog mode backward by pressing and holding the "F1" key stop jog mode backward by releasing the "F1" key
start jog mode forward by pressing and holding the "F5" key
stop jog mode forward by releasing the "F5" key


## G. 5 Using the Standard IF Displays in ProTool/Lite

| Section | Contents | Page |  |
| :--- | :---: | :--- | :---: |
| Section <br> Overview | G.5.1 | Items and Variables in the Standard IF Displays | G-14 |
| G.5.2 | Changing the Standard Configuration | $\mathrm{G}-16$ |  |

## G.5.1 Items and Variables in the Standard IF Displays

## Standard Configuration

The standard configuration includes the following displays for the integrated functions:

Table G-6 Names and Functions of the Standard IF Displays

| Standard Configuration IF_BILD.PDB |  |
| :--- | :--- |
| Display Name | Function |
| ZIF_FREQ | Frequency Meter |
| ZIF_COUNTER | Counter |
| ZIF_HSC_A | Counter A |
| ZIF_HSC_B | Counter B |
| ZIF_POS | Positioning |

The following tables show

- the individual items in each display
and
- the address areas accessed by the variables used

The functions and names of the variables in the standard displays correspond exactly to the input and output parameters of the instance DBs.

For detailed information on the input/output parameters of the instance DBs please refer to chapters 3 and 4 of this manual.

Tabelle G-7 ZIF_FREQ: Items and Variables

| ZIF_FREQ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Text | Variable Name | Address |  | Type | Remarks |
| Frequency: | FREQ | DB62 | DBD10 | Output | Current frequency value |
| Comparison val. LL <br> current | L_LIMIT | DB62 | DBD18 | Output | Current lower limit <br> comparison value |
| Comparison val. LL <br> new | PRES_L_LIMIT | DB62 | DBD4 | Input/Output | New lower limit com- <br> parison value |
| Comparison value UL <br> current | U_LIMIT | DB62 | DBD14 | Output | Current upper limit <br> comparison value |
| Comparison value UL <br> new | PRES_U_LIMIT | DB62 | DBD0 | Input/Output | New upper limit com- <br> parison value |

Table G-8 ZIF_COUNTER: Items and Variables

| ZIF_COUNTER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Text | Variable Name | Address |  | Type | Remarks |
| Actual value | COUNT | DB 63 | DBD14 | Output | Current counter status |
| Software Start/Stop ${ }^{1}$ | EN_COUNT | DB 63 | DBX12.0 | Output | Start/Stop counter |
| Start value | PRES_COUNT | DB 63 | DBD0 | Input/output | Start value of counter |
| Comparison value A current | COMP_A | DB 63 | DBD18 | Output | Current comparison value A |
| Comparison value A new | PRES_COMP_A | DB 63 | DBD4 | Input/output | New comparison value A |
| Comparison value B current | COMP_B | DB 63 | DBD22 | Output | Current comparison value B |
| Comparison value $B$ new | PRES_COMP_B | DB 63 | DBD8 | Input/output | New comparison value B |

Table G-9 ZIF_HSC_A or ZIF_HSC_B: Entries and Variables

| ZIF_COUNTER $^{\|c\|}$ Text |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Variable Name | Address |  | Type | Remarks |  |
| Actual value | A_COUNT $^{1}$ | DB 60* | DBD6 | Output | Current counter status |
| Enable | A_EN_COUNT $^{1}$ | DB 60* | DBX4.0 | Input/output | Counter enable |
| Reset | A_RESET $^{1}$ | DB 60* | DBX4.1 | Input/output | Reset counter |
| Comparison value <br> current | A_COMP $^{1}$ | DB 60* | DBD10 | Output | Current comparison value |
| Comparison value <br> new | A_PRES_COMP |  |  |  |  |

1 A_... for counter A; B_... for counter B

* DB 60 for counter A; DB 61 for counter B

Table G-10 ZIF_POS: Entries and Variables

| ZIF_POS |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Text | Variable Name | Address |  | Type | Remarks |
| Actual position | ACTUAL_POS | DB 59 | DBD12 | Output | Current position |
| Synchronization | POS_VALID | DB 59 | DBX16.2 | Output | Actual position is valid |
| Jog backward | POS_MODE1 | DB 59 | DBX11.1 | Input/output | Jog mode backward |
| Jog forward | POS_MODE2 | DB 59 | DBX11.0 | Input/output | Jog mode forward |
| Destination position | DEST_VAL | DB 59 | DBD0 | Input/output | Destination position |
| Positioning | POS_STRT | DB 59 | DBX11.3 | Input/output | Start positioning operation |
| Reference point | REF_VAL | DB 59 | DBD4 | Input/output | New reference point |
| Set actual position | SET_POS | DB 59 | DBX11.4 | Input/output | Set actual position |

## G.5.2 Changing the Standard Configuration

## Purpose

You can adapt the standard configuration to suit the requirements of your plant or application.
For example, you can modify:

- Operator guidance for calling the standard IF displays
- The treatment of inputs/outputs, e.g. conversion
- The PLC and the data interface to the instance DBs


## Examples

The following tables show some of the changes you can make to the configuration.

Table G-11 Modifying Operator Guidance

| Operator Guidance |  |  |
| :--- | :--- | :--- |
| Configurable: | Description | Menu Item/Dialog Box in <br> ProTool/Lite |
| User-defined operat- <br> ing hierarchy | ProTool/Lite enables you to link displays as <br> you like. <br> You can also incorporate IF displays in exist- <br> ing projects | See ProTool/Lite documentation |
| List of contents | You can specify which standard displays you <br> want to include in the list of contents | Display editor: <br> "Display" menu $\rightarrow$ "Attributes" |
| Password protection | You can assign the value input variables a <br> password level between 0 and 9 | Display editor: <br> Double-click relevant variable $\rightarrow$ "Input// <br> Output" dialog box |

Table G-12 Modifying Displays

| Displays |  |  |
| :---: | :---: | :---: |
| Configurable: | Description | Menu Item/Dialog Box in ProTool/Lite |
| Display name/title | You can change the symbolic name and the title of a display. <br> The title of the display is also the name of the display entered in the list of contents. | Display editor <br> "Display" menu $\rightarrow$ "Attributes" |
| Display items and texts | You can delete, add or modify display items (software inputs/outputs of the IFs) and texts. | Display editor: <br> Editing display items and texts |
| Linear conversion | You can specify conversion for value input/output. <br> This enables you to enter and monitor values in particular engineering units. <br> The following conversion function is available: | Display editor: <br> 1. Double-click relevant variable $\rightarrow$ "Input/Output" dialog box <br> 2. "Edit" button $\rightarrow$ "Variable" dialog box <br> 3. "Functions" button $\rightarrow$ "Functions" dialog box <br> 4. Choose "Linear conversion" <br> 5. "Parameters" button $\rightarrow$ "Function parameters" dialog box $\rightarrow$ "Linear conversion" <br> 6. Enter constants "a" and "b" |
| Range limits for entries | You can specify range limits for value input. | Display editor: <br> 1. Double-click relevant variable $\rightarrow$ "Input/Output" dialog box <br> 2. "Edit" button $\rightarrow$ "Variable" dialog box <br> 3. "Limits" button $\rightarrow$ "Limits" dialog box <br> 4. Specify/change limit values |

Table G-13 Modifying the PLC and the Data Interface to the Instance DB

| PLC, Data Interface to Instance DB |  |  |
| :---: | :---: | :---: |
| Configurable: | Description | Menu Item/Dialog Box in ProTool/Lite |
| Additional PLC | ProTool/Lite allows you to configure the OP3 for communication with up to two PLCs. | 1. Specifying additional PLC and parameters for MPI: <br> Menu "PLC" $\rightarrow$ "Controller" <br> "New" button $\rightarrow$ "Protocol" dialog box <br> 2. Adapting displays and variables: <br> Duplicate all displays and variables requiring access to the second PLC <br> "Variable" dialog box: enter PLC 2 for each duplicated variable |
| DB Nos. of the instance DBs | The OP3 accesses the instance DBs in the CPU direct. <br> The default numbers for the standard IF displays are: <br> Please note: <br> If the DB No. of the instance DB in the CPU is changed, all the relevant variables of the individual IF displays must be adapted individually! | Variable Editor: <br> 1. "Variable" -> "Variable" dialog box <br> 2. Enter DB No. again |

## G. 6 Accessing the Instance DB from OP3 and SFB

## Function of the Standard IF Displays

Access from OP3 and SFB

## Preventing Access

 ContentionThe standard IF displays access the input/output variables of the instance DBs of the integrated functions direct. Entries on the OP are written straight to the instance DB.

The user program can also write data to the instance DBs with the SFBs for the integrated functions.

No distinction is made between the OP3 and the user program for either write or read access to the instance DB.

To prevent simultaneous access to the instance DB from OP3 and PLC, you should ensure that each of the variables in the instance DB is only subject to write access from either the OP3 or the user program when writing your user program.

## Glossary

| Axis | The axis consists of toothed belt, spindle, toothed rack (pinion), hydraulic cylinder, gears and coupling system. |
| :---: | :---: |
| Changeover Point | At the changeover point, the drive is switched from rapid traverse to creep speed. |
| Comparator | A comparator compares the actual value of the Counter/Frequency Meter with a defined comparison value and triggers a reaction on certain events. An event occurs when the actual value reaches or falls below a specific counting value or frequency. |
| Counting Pulses | Counting pulses are positive or negative edges which are counted on the digital inputs of the integrated inputs/outputs and cause the count (current value of the counter) to be incremented/decremented by 1 . |
| Creep Speed | In the case of rapid traverse/creep speed drives, the system changes from rapid traverse to creep speed shortly before the destination position. This increases the accuracy of the positioning. |
| Destination Position | After a positioning operation is started, the axis approaches the destination position specified by the Positioning integrated function. |
| Differential Counting | Differential counting determines the difference between incoming and outgoing parts, for example, in a parts store. |
| Distance per Encoder Revolution | The distance per encoder revolution indicates the distance traveled by the axis in one encoder revolution. |
| Drive | The drive consists of the power controller and the motor that drives the axis. |
| Encoders | Encoders are used for accurate capturing of distances, positions and speeds. |

In the case of rapid traverse/creep speed drives, the system changes from rapid traverse to creep speed shortly before the destination position. This increases the accuracy of the positioning.

After a positioning operation is started, the axis approaches the destination position specified by the Positioning integrated function.

Differential counting determines the difference between incoming and outgoing parts, for example, in a parts store.

The distance per encoder revolution indicates the distance traveled by the axis in one encoder revolution.

Encoders are used for accurate capturing of distances, positions and speeds.

## Incremental Encoders

Increments per Encoder Revolution

## Integrated Inputs/

 OutputsJog Mode

## Limit Switches

Open-Loop Positioning

## Periodic Counting

## Positioning

Power Section

## Quadruple <br> Evaluation

Rapid Traverse

Rapid Traverse and Creep Speed Drive

## Reference Point

## Reference Point Approach

Incremental encoders capture distances, positions, velocities, rotational speeds, quantities and more by counting small increments.

Increments per encoder revolution indicate the number of increments an encoder gives per revolution.

Integrated inputs/outputs are inputs and outputs located on the CPU .

Jog mode moves the axis "manually" to any position.

The working range of the axis is defined by 2 limit switches

In open-loop positioning, the axis travels to the specified destination position without feedback of the actual value.

A periodic counting process is a counting process which is repeated (e.g. counter counts from 1 to 10 and starts again at 1 ).

Positioning means bringing a load to a defined position within a certain time taking account of all influencing forces and torques.

The power section is connected to outputs of the integrated inputs/outputs of the CPU 314 IFM. The power section drives the motor and consists of, for example, a contactor circuit.

An incremental encoder evaluates all edges (4) of the pulse trains A and B.

The destination position is approached first at rapid traverse.

A rapid traverse and creep speed drive is a drive that approaches a position on an axis first at rapid traverse and then at creep speed. See also $\rightarrow$ Rapid Traverse and $\rightarrow$ Creep Speed

The reference point is the synchronization point between the Positioning integrated function and the actual position of the axis.

A reference point approach synchronizes the Positioning integrated function with the actual position of the axis.

Reference Point The reference point switch determines the physical position of the reference Switch point.

Sample Time

Switch-Off
Difference

Switch-Off Point The drive is switched off at a certain interval (switch-off difference) from the destination. This is the switch-off point. This ensures exact positioning of the axis.

Synchronization Synchronization informs the Positioning integrated function of the actual position of the axis.

Traverse Range The traverse range is the range within which the axis can move.

Zero Mark

Zero Mark Signal The zero mark signal is output by an incremental encoder after each revolution.

## Index

## A

Aborting
jog mode, 6-39
positioning operation, 6-40
Acceleration, frequency converter, 6-11
Acceleration distance, 6-20
frequency converter, 6-11
Accuracy, of measurement, 3-8, 3-9
Activation, 2-6
Actual position, of the axis, 6-5
Actual value of the counter, calculation, 4-3, 5-3
Actuator
connection, 4-14, 5-12
terminals, 4-14, 5-12
Actuators
connecting, 6-26
terminals, 6-26, 6-28
Analog value output
in steps, 6-20
positioning integrated function, 6-20
Asynchronous motor, 6-4
Axis, Glossary-1

## B

Block diagram
counter $\mathrm{A} / \mathrm{B}$ integrated function, 5-2
counter integrated function, 4-2
frequency meter integrated function, 3-2
Boundary frequency, positioning integrated function, 6-18

## C

CE, mark, iv
Change counting direction, 5-4
Change in CPU operating state, effect on positioning, 6-42
Changeover point, Glossary-1
Changing, standard configuration for OP3, G-16
Comparator, 3-5, 3-6, 4-5, 5-5 Glossary-1

Comparison value, 3-5, 4-5, 4-8, 4-9, 5-5
accepting, 3-6, 4-7, 5-6
current, 3-13
definition, 5-6
new, 3-6, 3-12, 4-7, 5-6
Configuration, 2-6
Contactor circuit, 6-4, 6-8, 6-9, 6-27
connecting, 6-26
Counter, 4-3
reset to reset value, 5-4
define start value, 4-4
Counter (A/B), 5-3
Counter A/B, parameter, 5-7
Counter integrated function
start, 4-4, 4-11
stop, 4-4, 4-11
Counter pulses, C-2, D-2
Counting
differential, Glossary-1
periodic, 4-40 Glossary-2
Counting direction, change, 4-4, 4-11
Counting event, 4-17
Counting pulses, B-2 Glossary-1
CPU, STOP operating state, 6-42
Cycle time, calculating, 3-17, 4-21, 5-18, 6-44

## D

Destination position, 6-9, Glossary-1
Differential counting, 4-31 Glossary-1
Digital inputs, special, 1-5
Digital output
configuration, 4-6, 5-6
enabling, 4-6
Drive, 6-4

## E

Enable counter, 5-4
Enabling input, 3-12

Encoder
asymmetrical, 6-3
signal shapes, 6-3
zero mark signal, 6-3, 6-24
Event, 5-5, 5-16
interrupt-triggering, 5-17
Event, 3-15 4-5, 4-20, 4-23
interrupt-triggering, 3-16. 4-22

## F

Frequency, 3-13
Frequency converter, 6-4, 6-8
analog value output in steps, 6-20
connecting, 6-28
controlling, 6-13, 6-22
speed profile, 6-11
Frequency limit, exceeded, 4-4, 5-4
Frequency Meter, 3-3 measuring principle, 3-3

## H

HOLD, 2-9

## I

Implementation, procedure, 1-6
Incremental encoder, 6-3, 6-5
connecting, 6-24
suitable, D-3
Input, edge-controlled, 2-4
Input for the frequency meter integrated function, 1-4
Input parameters, 3-12, 4-17, 5-13 SFB 39, 6-30
Inputs for the counter $\mathrm{A} / \mathrm{B}$ integrated function, 1-5
Inputs for the counter integrated function, 1-4, 1-5
Inputs for the frequency meter integrated function, 1-5
Inputs for the positioning integrated function, 1-5
Installation, standard configuration for OP3, G-3
Instance DB, 2-3, 3-7, 3-14, 4-19
contents, 2-5
functions, 2-5
length, 3-14, 4-19, 5-15
updating, 2-5, 6-44

Instance DB for positioning
length, 6-43
structure, 6-43
Instance DBs, access via IF displays, G-19
Instance-DB, 4-8
updating, 3-17, 4-21 5-18
Integrated function
inclusion, 2-2
properties, 1-2
Integrated functions, possible applications, 1-3
Integrated inputs, special inputs, 1-4
Integrated inputs/outputs, Glossary-2
special, 1-4, 1-5
Interrupt, 3-16, 4-20, 5-17
Interrupt inputs, 1-4, 1-5
Interrupt OB, 2-3, 3-16, 4-20, 5-17
Interrupt response time on the CPU, 2-4

## J

Jog mode aborting, 6-39
execute, 6-38
positioning integrated function, 6-7
terminating, 6-39
velocity, 6-8

## L

Limit frequency, exceeded, 3-4
Limit switch, 6-7 Glossary-2

## M

Mark, CE, iv
Maximum speed, frequency converter, 6-11
Measured signal, A-2
Measurement
accuracy, 3-8, 3-9
resolution, 3-8, 3-9
Measurement error, calculation, 3-8, 3-9
Modify variable, 2-7

## 0

OB 40, 2-3, 4-20
start information for integrated I/Os, 3-16, 5-17

OP 3
linking configuring computer, G-4
standard configuration, G-2
Operating, the standard IF displays, G-7
Operating mode of the CPU
RUN, 2-8
START, 2-8
STOP, 2-8
Operating mode transitions of the CPU, 2-9
Operator interface, 2-5
Operator panel, 2-5
Output parameter, 4-18
SFB 39, 6-32
Output parameters, 3-13, 5-14

## P

Performance features, positioning integrated function, 6-1
Periodic counting Glossary-2
Positioning, parameter, 6-19
Positioning integrated function
analog value output, 6-20
boundary frequency, 6-18
effects of a change in CPU operating state, 6-42
hardware inputs/outputs, 6-17
inputs and outputs, 6-15, 6-16
performance features, 6-1
software inputs/outputs, 6-17
Positioning operation
aborting, 6-40
example, 6-36, 6-41
executing, 6-40
sequence, 6-15
terminating, 6-40
Power failure, 2-5
Power section, Glossary-2
connecting, 6-26
positioning integrated function, 6-4
Process interrupt, 2-3, 3-16 4-20, 5-17
Pulse evaluation, positioning integrated function, D-2

## R

Rapid traverse and creep speed, speed profile, 6-9
Rapid traverse/creep speed, controlling, 6-22
Reaction, configurable, 4-6, 5-5
Reference literature, F-1

Reference point, 6-5, Glossary-2
accuracy, 6-6
Reference point approach, 6-5, Glossary-2
Reference point switch, 6-5 6-6, Glossary-3
connecting, 6-24
repeat accuracy, 6-6
Remedy, E-1
Response, configurable, 3-5
Response path, 4-23 5-19
Response time, 4-21, 4-23, 5-18, 5-19
Resynchronization, of the integrated function, 6-35
Retentivity, 2-5
RUN, 2-9

## S

Sample time, 3-3, 3-7, Glossary-3
Scan cycle checkpoint, 2-3
Sensor, connection, 3-10
Sensors
connection, 4-11
terminals, 3-10, 4-12
SFB, 2-3, 2-4
calling, 2-4
interrupting, 2-4
not calling cyclically, 2-4
runtime, 3-17, 4-21, 5-18
SFB 29
input parameters, 4-17, 5-13
output parameters, 4-18, 5-14, 6-32
SFB 30
input parameters, 3-12
output parameter, 3-13
SFB 38
input parameter, 5-13
output parameter, 5-14
SFB 39
input parameters, 6-30
output parameters, 6-32
Shielding, 3-11, 4-13, 5-11, 6-25
Standard configuration
changing, G-16
OP 3, G-2
transfer to the OP3, G-3
Standard configuration for OP3, installation, G-3
Standard display for counter IF
display entries, address ranges, G-14
structure, G-9

Standard display for frequency meter IF display entries, address ranges, G-14 structure, G-8
Standard display for the counter A or B IF, structure, G-10
Standard display for the positioning IF, structure, G-11
Standard display IF-counter A/B, display entries, address ranges, $\mathrm{G}-14$
Standard display IF-positioning, display entries, address ranges, G-14
Standard IF displays access to instance DBs, G-19 operating, G-7
Standard-digital inputs, 1-4, 1-5
START, 2-9
Start and destination position, effect of the distance, 6-22
Start information for integrated I/Os, OB 40, 3-16, 5-17
Status bit, 3-5, 3-12, 4-6
Status block, 2-7
Status variable, 2-7
STEP 7 manuals, $\mathrm{F}-1$
STOP, 2-9
CPU operating state, 6-42
Stopping distance frequency converter, 6-11
rapid traverse and creep speed, 6-9 rapid traverse and creep speed drive, 6-9
Structure
standard display for counter IF, G-9 standard display for frequency meter IF, G-8 standard display for the counter A or B IF, G-10 standard display for the positioning IF, G-11

Switch-off difference, Glossary-3
determining, 6-48
frequency converter, 6-12
rapid traverse and creep speed drive, 6-9
Switch-off point Glossary-3
Synchronization Glossary-3
of positioning integrated function, 6-33
Synchronizing, the positioning integrated func-
tion, 6-5, 6-7
Synchronous motor, 6-4
System function block (SFB). See SFB

## T

Technical specifications, A-1, B-1, C-1, D-1
Terminating
jog mode, 6-39
positioning operation, 6-40
Test functions, 2-7
Time limits, to observe, 4-12, 5-10
Transfer, standard configuration to the OP3, G-3
Traverse range Glossary-3

## Z

Zero mark, Glossary-3
Zero mark signal, encoder, 6-3, 6-24

# Siemens AG 

AS A\&D E 48
Postfach 1963

D-92209 Amberg
Federal Republic of Germany

From:
Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

| $\square$ | Automotive | $\square$ | Pharmaceutical |
| :--- | :--- | :--- | :--- |
| $\square$ | Chemical | $\square$ | Plastic |
| $\square$ | Electrical Machinery | $\square$ | Pulp and Paper |
| $\square$ | Food | $\square$ | Textiles |
| $\square$ | Instrument and Control | $\square$ | Transportation |
| $\square$ | Nonelectrical Machinery | $\square$ | Other $\ldots \ldots \ldots \ldots$ |
| $\square$ | Petrochemical |  |  |

## Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Is the text easy to understand?
4. Does the level of technical detail meet your requirements?
5. Please rate the quality of the graphics/tables:

## Additional comments:



# Siemens AG 

AS A\&D E 48
Postfach 1963

D-92209 Amberg
Federal Republic of Germany

From:
Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

| $\square$ | Automotive | $\square$ | Pharmaceutical |
| :--- | :--- | :--- | :--- |
| $\square$ | Chemical | $\square$ | Plastic |
| $\square$ | Electrical Machinery | $\square$ | Pulp and Paper |
| $\square$ | Food | $\square$ | Textiles |
| $\square$ | Instrument and Control | $\square$ | Transportation |
| $\square$ | Nonelectrical Machinery | $\square$ | Other $\ldots \ldots \ldots \ldots$ |
| $\square$ | Petrochemical |  |  |

## Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?
2. Is the information you need easy to find?
3. Is the text easy to understand?
4. Does the level of technical detail meet your requirements?
5. Please rate the quality of the graphics/tables:

## Additional comments:




[^0]:    1 Parameter can only be assigned in the CPU 314 IFM. In the CPU 312 IFM, the parameter is automatically activated
    2 Process interrupt can only be set with configured sample times of 1,2 and 4 ms

[^1]:    1 Please refer to the manual S7-300 Programmable Controller, Installation and Hardware for the time required for the CPU 312 IFM.
    2 You have to determine the user program execution time, because it depends on your user program.
    3 If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

[^2]:    1 Only necessary with CPU 314 IFM input

[^3]:    1 Parameter can only be set in CPU 314 IFM. In the CPU 312 IFM, the parameter is automatically activated

[^4]:    Evaluation in
    User Program

    The evaluation of process interrupts in the user program is described in the Programming Manual System Software for S7-300/400, Program Design.

[^5]:    Velocity in Jog
    Mode
    You specify the velocity with which jog mode is to execute via the user program. The velocity you can specify depends on the power section used.

    For the contactor circuit, you can move the axis in jog mode at rapid traverse or at creep speed.

    More velocities are possible for a frequency converter. The procedure for defining the velocity is given in Section 6.7 in Table 6-11.

[^6]:    * If you specify " 0 " in the case of rapid traverse/creep speed drives, the system switches to creep speed for 1 increment and thereafter the digital outputs "Creep speed" and "Direction forward/backward" are set to " 0 ".
    If you specify " 0 " in the case of frequency converters, the analog value will be increased by one step with each increment.

[^7]:    * If you set POS_MODE1 or 2 when POS_READY $=0$, jog mode will not be started. It will also not be started if POS_READY = 1. Remedy: Reset POS_MODE1 or 2 back to " 0 " and start jog mode again as soon as POS_READY $=1$.

[^8]:    * You can also start the counter with the "F1" key and stop it with the "F3" key in each display item.

