SIEMENS

	Preface, Contents	
	Product Overview	1
	What you Should Know about the Integrated Functions	2
SIMATIC	Frequency Meter Integrated Function	3
S7-300 Programmable Controller	Counter Integrated Function	4
Integrated Functions CPU 312 IFM/314 IFM	Counter A/B Integrated Function (CPU 314 IFM)	5
	Positioning Integrated Function (CPU 314 IFM)	6
Manual		
	Appendices	
	Technical Specifications of the Frequency Meter Integrated Function	Α
	Technical Specifications of the Counter Integrated Function	В
	Technical Specifications of the Counter A/B Integrated Function	С
	Technical Specifications of the Positioning Integrated Function	D
	Troubleshooting	Е
	SIMATIC S7 Reference Literature	F
	Using the Integrated Functions with the OP 3	G
	Glossar, Index	

EWA 4NEB 710 6058-02a

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to protect the product and connected equipment. These notices are highlighted in the manual by a warning triangle and are marked as follows according to the level of danger:

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not taken.

Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular part of the documentation.

Qualified Personnel The device/system may only be set up and operated in conjunction with this manual.

Only **qualified personnel** should be allowed to install and work on this equipment. Qualified persons are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the technical description, and only in connection with devices or components from other manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and operated and maintained as recommended.

Trademarks SIMATIC[®] and SINEC[®] are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might infringe upon the rights of the trademark owners.

Copyright © Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Siemens AG Automation Group Industrial Automation Systems P.O. Box 4848, D-90327 Nuremberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Technical data subject to change. © Siemens AG 1996

Preface

Purpose		n this manual enables you to so ctions of the CPU 312 IFM or	
Audience	This manual is add the CPU 312 IFM	dressed to users who wish to u /CPU 314 IFM	se the integrated functions of
	Users will find the	e following information:	
	Basic informat	tion on the integrated functions	3
	• A description of tioning integra	of the Frequency Meter, Count ted functions	er, Counter A/B and Posi-
	• The technical	specifications of the integrated	functions
	• The use of the	integrated functions with the O	OP3.
Scope of this Manual	als S7-300 Progra	he CPUs and the S7-300 modu smmable Controller, Installatio nable Controllers, Module Spe lid for:	n and Hardware and S7-300,
	CPU	Order No.	From Product Versions
	CPU 312 IFM	6ES7 312-5AC01-0AB0	01
	CPU 314 IFM	6ES7 314-5AE02-0AB0	01
Changes From the	IFM and CPU 314 right to describe n uct Information.	tibes the integrated functions c IFM at the date of issue of the nodifications to the integrated	e manual. We reserve the

Approbations	The following approbations exist for the S7-300:
	UL-Recognition-Mark Underwriters Laboratories (UL) in accordance with Standard UL 508, File No. 116536
	CSA-Certification-Mark Canadian Standard Association (CSA) in accordance with Standard C22.2 No. 142, File No. LR 48323
CE Mark	Our products conform to the requirements of EC Directive 89/336/EEC "Electromagnetic Compatibility" and the harmonized European standards (ENs) listed therein. The EU certificates of conformity are held at the disposal of the competent authorities in accordance with the above-named EC directive, Article 10, at the following address:
	Siemens Aktiengesellschaft Bereich Automatisierungstechnik A & D AS E 14 Postfach 1963 D-92209 Amberg Federal Republic of Germany
Recycling and Disposal	The SIMATIC S7-300 is an environmentally-friendly product!The SIMATIC S7-300 is characterized by the following points:The housing plastic is equipped with halogen-free flameproofing despite
	its high level of fireproofing.
	• Laser labeling (that is, no paper labels)
	Plastics materials labeled in accordance with DIN 54840
	 Reduction in materials used thanks to more compact design, fewer components thanks to integration in ASICs
	The SIMATIC S7-300 can be recycled thanks to the low level of pollutants in its equipment.
	Please contact the following address for environmentally-friendly recycling and disposal of your old SIMATIC equipment:
	Siemens Aktiengesellschaft Technische Dienstleistungen ATD TD 3 Kreislaufwirtschaft Postfach 32 40 D-91050 Erlangen
	Telephone: ++49 9131/7-3 36 98 Fax: ++49 9131/7-2 66 43
	This Siemens service department provides a comprehensive and flexible dis- posal system with customized advice at a fixed price. After disposal, you receive a breakdown of the dismantling procedure with information on the proportions of materials and the relevant material record documentation.

Scope of the Documentation Package

The documentation should be ordered separately from the CPU:

CPU	Documentation
CPU 312 IFM or	• S7-300 Programmable Controller, Installation and Hardware Manual
CPU 314 IFM	• S7-300 and M7-300 Programmable Controllers, Module Specifications Reference Manual
	• S7-300 Programmable Controller Instruction List
	Integrated Functions CPU 312 IFM/314 IFM Manual

In Appendix F , you will find a list of documentation which you require for programming and starting up of the S7-300.

CD-ROM	You can also order the entire SIMATIC S7 documentation as SIMATIC S7 reference documentation on CD-ROM.
How to Use This Manual	This manual features the following access aids for fast reference to specific information:
	• The manual starts with a complete table of contents, also including a list of all figures and tables appearing in the manual.
	• In the various chapters, the headlines on the left margin highlight the con- tents of the particular section.
	• The glossary in the last chapter of the Appendix explains important terms employed in the manual.
	• The index at the end of this manual enables you to get fast access to the information required.
Additional Assistance	If you have any queries about the products described in this manual, please contact your local Siemens representative. You can find the addresses of Siemens representatives in the Appendix "Siemens Worldwide" of the manual <i>S7-300 Programmable Controller, Installation and Hardware</i> .
	If you have any questions or suggestions concerning this manual, please fill in the form at the end of this manual and return it to the specified address. Please feel free to enter your personal assessment of the manual in the form provided.
	We offer a range of courses to help get you started with the SIMATIC S7 pro- grammable controller. Please contact your local training center or the central training center in Nuremberg, D-90327 Germany, Tel. +49 911 895 3154.

Contents

1	Produc	t Overview		
	1.1	Introduction to the Integrated Functions	1-2	
	1.2	Integrated Functions on the CPU 312 IFM	1-4	
	1.3	Integrated Functions on the CPU 314 IFM	1-5	
	1.4	Guide through the Manual for Successful Implementation of an Integrated Function	1-6	
2	What yo	ou Should Know about the Integrated Functions		
	2.1	How the Integrated Functions are Included in the CPU 312 IFM/CPU 314 IFM	2-2	
	2.2	How to Include the Integrated Function in the User Program	2-4	
	2.3	Functions and Properties of the Instance DB	2-5	
	2.4	How to Activate and Configure the Integrated Functions	2-6	
	2.5	How to Test the Integrated Functions	2-7	
	2.6	How the Integrated Functions Behave on Operating Mode Transitions on the CPU	2-8	
3	Frequency Meter Integrated Function			
	3.1	Function Overview	3-2	
	3.2	How the Frequency Meter Integrated Function Operates	3-3	
	3.3	Function of the Comparator	3-5	
	3.4	Assigning Parameters	3-7	
	3.5	Connecting the Sensors to the Integrated Inputs/Outputs	3-9	
	3.6	System Function Block 30	3-11	
	3.7	Structure of the Instance DB	3-13	
	3.8	Evaluation of Process Interrupts	3-15	
	3.9	Calculating the Cycle Time	3-17	
	3.10 3.10.1 3.10.2	Example Applications Speed Monitoring within a Fixed Speed Range Speed Monitoring within Two Speed Ranges	3-18 3-19 3-26	
4	Counte	r Integrated Function		
	4.1	Function Overview	4-2	
	4.2	How the Counter Operates	4-3	

	4.3	Function of a Comparator	4-5
	4.4	Assigning Parameters	4-8
	4.5 4.5.1 4.5.2	Wiring Connecting Sensors to the Integrated Inputs/Outputs Connecting Actuators to the Integrated Inputs/Outputs	4-10 4-11 4-14
	4.6	System Function Block 29	4-16
	4.7	Structure of the Instance DB	4-19
	4.8	Evaluation of Process Interrupts	4-20
	4.9	Calculating the Cycle Time and Response Times	4-22
	4.10 4.10.1 4.10.2 4.10.3	Example Applications Regular Counting with Comparison Value Differential Counting Periodic Counting	4-24 4-25 4-31 4-40
5	Counter	A/B Integrated Function (CPU 314 IFM)	
	5.1	Function Overview	5-2
	5.2	How the Counters Operate	5-3
	5.3	Function of a Comparator	5-5
	5.4	Assigning Parameters	5-7
	5.5 5.5.1 5.5.2	Wiring Connecting Sensors to the Integrated Inputs/Outputs Connecting Actuators to the Integrated Inputs/Outputs	5-9 5-10 5-12
	5.6	System Function Block 38	5-13
	5.7	Structure of the Instance DB	5-15
	5.8	Evaluation of Process Interrupts	5-16
	5.9	Calculating the Cycle Time and Response Times	5-18
6	Position	ing Integrated Function (CPU 314 IFM)	6-1
	6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	Introduction to the Positioning Integrated Function Encoders and Power Sections for the Positioning Integrated Function Reference Point Approach Jog Mode Controlling Rapid Traverse/Creep Speed Drives Controlling the Drive via Frequency Converters	6-2 6-3 6-5 6-7 6-9 6-11
	6.2	Functional Principle of the Positioning Integrated Function	6-15
	6.3	Parameter Assignment	6-19
	6.4	Controlling the Outputs via the Integrated Function	6-20
	6.5	Effect of the Distance Between the Start and Destination Position on Controlling the Outputs	6-22
	6.6	Wiring	6-23

	6.6.1 6.6.2	Connecting the Incremental Encoder and the Reference Point Switch to the Integral Inputs/Outputs Connecting the Power Section to the Integral Inputs/Outputs	6-24 6-26
	6.7 6.7.1 6.7.2 6.7.3 6.7.4	System Function Block 39 Synchronization Execute Jog Mode Executing a Positioning Operation Behavior of the Input and Output Parameters of SFB 39 at CPU Operating State Transitions	6-30 6-33 6-38 6-40 6-42
	6.8	Structure of the Instance DB	6-43
	6.9	Calculating the Cycle Time	6-44
	6.10 6.10.1 6.10.2 6.10.3	Application Examples Cutting Foil to Length Positioning Paint Cans Positioning a Worktable	6-45 6-46 6-52 6-60
Α	Technic	al Specifications of the Frequency Meter Integrated Function	
В	Technic	al Specifications of the Counter Integrated Function	
С	Technic	al Specifications of the Counter A/B Integrated Function (CPU 314 IFM)
D	Technic	al Specifications of the Positioning Integrated Function (CPU 314 IFM)	
Е	Troubles	shooting	
	noubic.	shooting	
F		ST Reference Literature	
F G	SIMATIC	5	
-	SIMATIC	S7 Reference Literature	G-2
-	SIMATIC Using th	S7 Reference Literature The Integrated Functions with the OP3	G-2 G-3
-	SIMATIC Using th G.1	S7 Reference Literature The Integrated Functions with the OP3 Introduction Installing the Standard Configuration on Programming Device/PC and	
-	SIMATIC Using th G.1 G.2	S7 Reference Literature The Integrated Functions with the OP3 Introduction Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3	G-3
-	SIMATIC Using th G.1 G.2 G.3 G.4 G.4.1 G.4.2 G.4.3 G.4.4	S7 Reference Literature Integrated Functions with the OP3 Introduction Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3 System Configuration for Installation and Operation Selecting and Using Standard IF Displays Selecting the Standard Display for the Frequency Meter IF Using the Standard Display for the Counter IF Using the Standard Display for the Counter A/B IF	G-3 G-4 G-6 G-7 G-8 G-9 G-10
-	SIMATIC Using th G.1 G.2 G.3 G.4 G.4.1 G.4.2 G.4.3 G.4.4 G.4.5 G.5 G.5.1	S7 Reference Literature he Integrated Functions with the OP3 Introduction Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3 System Configuration for Installation and Operation Selecting and Using Standard IF Displays Selecting the Standard IF Displays Using the Standard Display for the Frequency Meter IF Using the Standard Display for the Counter IF Using the Standard Display for the Counter A/B IF Using the Standard Display for the Positioning IF Using the Standard IF Displays in ProTool/Lite Items and Variables in the Standard IF Displays	G-3 G-4 G-6 G-7 G-8 G-9 G-10 G-11 G-13 G-14

Index

Figures

1-1	Integrated Inputs/Outputs of the CPU 312 IFM for Integrated Functions .	1-4
1-2	Integrated Inputs/Outputs of the CPU 314 IFM for Integrated Functions .	1-5
2-1	Inclusion of the Integrated Functions in the CPU 312 IFM	2-2
2-2	Operating Mode Transitions	2-9
3-1	Block Diagram for Frequency Meter Integrated Function	3-2
3-2	Display of First Valid Frequency Value	3-4
3-3	Function of the Comparator	3-6
3-4	Sensor Wiring (CPU 312 IFM)	3-10
3-5	Graphical Illustration of SFB 30	3-12
3-6	Start Information of OB 40: Which Event Triggered Interrupt	
	(Frequency Meter)?	3-16
3-7	Speed Monitoring of a Shaft (1)	3-19
3-8	Sequence Diagram for Example 1	3-21
3-9	Initialization of SFB 30 at Start-Up (1)	3-22
3-10	Initialization of SFB 30 in the Cyclic Program (1)	3-23
		3-23
3-11	Speed Monitoring of a Shaft (2)	
3-12	Sequence Diagram for Example 2	3-28
3-13	Initialization of SFB 30 on Start-Up (2)	3-29
3-14	Initialization of SFB 30 in the Cyclic Program (2)	3-30
4-1	Block Diagram for Counter Integrated Function	4-2
4-2	Counting Pulses and Actual Value of the Counter	4-3
4-3	Events to which a Comparator Reacts	4-5
4-4		4-7
	Example: Trigger Reactions	
4-5	Timing of the Hardware Start/Stop and Direction Digital Inputs	4-12
4-6	Sensor Wiring	4-13
4-7	Actuator Wiring	4-15
4-8	Graphical Illustration of SFB 29	4-16
4-9	Start Information of OB 40: Which Event Triggered Interrupt	
10	(Counter IF)?	4-22
4 4 0		4-23
4-10	Response Paths	
4-11	Regular Counting with Comparison Value	4-25
4-12	Sequence Diagram for Example 1	4-27
4-13	Initialization of SFB 29 on Start-Up (1)	4-28
4-14	Differential Counting	4-31
4-15	Sequence Diagram for Example 2	4-33
4-16	Initialization of SFB 29 on Start-Up (2)	4-36
4-17	Initialization of SFB 29 in the Cyclic Program (2)	4-36
4-18		4-40
4-19	Sequence Diagram for Example 3	4-41
4-20	Initialization of SFB 29 on Start-Up (3)	4-43
5-1	Block Diagram for Counter A/B Integrated Function	5-2
5-2	Counting Pulses and Actual Value of the Counter	5-3
5-3	Events to which a Comparator Reacts	5-5
5-4	Example: Trigger Reactions	5-6
5-5	Timing of the Direction Digital Inputs for Counters A and B	5-10
5-6	Sensor Connecting	5-11
5-7	Actuator Connecting	5-12
5-8	Graphical Illustration of SFB 38	5-13
5-9	Start Information of OB 40: Which Event Triggered Interrupt (Counter A/B	IF)? .
	5-17	
5-10	Response Paths	5-19
	······································	

6-1	Encoder Classification	6-3
6-2	Signal Shapes of Asymmetrical Incremental Encoders	6-3
6-3	Classification According to Drive Control	6-4
6-4	Worktable Example	6-5
6-5	Evaluation of the Reference Point Switch	6-6
6-6	Velocity Profile in the Case of Rapid Traverse and Creep Speed Drives .	6-9
6-7	Positioning Operation in Forward Direction in the Case of Rapid Traverse a	and
	Creep Speed Drives	6-10
6-8	Velocity/Acceleration Profile in the Case of Frequency Converters	6-11
6-9	Switch-Off Difference when Controlling a Frequency Converter	6-12
6-10	Positioning Operation in Forward Direction (1 Analog and 2 Digital Outputs	for-
	Frequency Converter)	6-13
6-11	Positioning Operation in Forward Direction (1 Analog Output for Frequency	,
	Converters)	6-14
6-12	Inputs and Outputs of the Positioning Integrated Function	6-15
6-13	Inputs and Outputs of the Positioning Integrated Function	6-16
6-14	Analog Value Output in Steps, BREAK = 0	6-20
6-15	Connecting Incremental Encoder and Reference Point Switch	6-25
6-16	Connecting the Contactor Circuit	6-27
6-17	Connecting a Frequency Converter with 1 Analog Output and	
	2 Digital Outputs	6-28
6-18	Connecting a Frequency Converter with 1 Analog Output	6-29
6-19	Graphical Representation of SFB 39	6-30
6-20	Starting Synchronization	6-34
6-21	Hardware Synchronization and Resynchronization	6-36
6-22	Jog Mode Forward and Terminating/Aborting Jog Mode	6-39
6-23	Positioning Operation for Rapid Traverse/Creep Speed Drive Forward	6-41
6-24	Cutting Foil to Length	6-46
6-25	Assignment of Distances/Pulses	6-47
6-26	Initialization of SFB 39 on Start-Up (1)	6-49
6-27	Positioning Paint Cans	6-53
6-28	Positioning Operation Sequence	6-54
6-29	Assignment of Distances/Pulses	6-55
6-30	Initialization of SFB 39 on Start-Up (2)	6-57
6-31	Positioning a Worktable	6-61
6-32	Assignment of Distances/Pulses to the Switches	6-62
6-33	Initialization of SFB 39 at Start-Up (3)	6-64
A-1	Properties of the Measured Signal	A-2
B-1	Properties of the Counting Pulse	B-2
C-1	Properties of the Counter Pulses	C-2
D-1	Pulse Evaluation and Properties of the Counter Pulses	D-2
D-2	Terminal Connection Model for Incremental Encoder 6FX 2001-4	D-3
G-1	Point-to-Point Connection (Setup for Configuring the OP3)	G-5
G-2	Multipoint Connection	G-5
G-3	Operating Hierarchy	G-7
G-4	Structure of the Standard Display for the Frequency Meter IF	G-8
G-5	Structure of the Standard Display for the Counter IF	G-9
G-6	Structure of the Standard Display for the Counter A/B IF	G-10
G-7	Structure of the Standard Display for Positioning IF	G-11

Tables

1-1	Selection Criteria for the Automation Task	1-3
1-2		1-6
2-1	Inclusion of the Integrated Functions in the CPU 312 IFM	2-3
2-2		2-7
2-3	B Operating Mode of the CPU	2-8
2-4	Operating Mode Transitions	2-9
3-1	Overview: Integrated Inputs/Outputs for Frequency Meter Integrated Function	tion
	on CPU 312 IFM and CPU 314 IFM	3-1
3-2		3-7
3-3		3-8
3-4	I ,	3-8
3-5		3-9
3-6		
00	IF Frequency Meter	3-9
3-7		3-10
3-8		3-12
3-9		3-13
3-1		3-14
3-1		3-14
3-1	· · · · · · · · · · · · · · · · · · ·	3-16
3-1		3-10
3-1		3-20
		3-21
3-1	I I I I I I I I I I I I I I I I I I I	
3-1		3-24
3-1	U I I I I I	3-27
3-1		3-29
3-1		3-31
4-1		
	CPU 312 IFM and CPU 314 IFM	4-1
4-2	5 1 1	4-8
4-3		4-11
4-4		4-12
4-5		4-14
4-6		4-17
4-7		4-18
4-8		4-19
4-9		4-20
4-1	.	4-20
4-1	1 0	4-23
4-1	5 1 1 ()	4-26
4-1		4-27
4-1	4 Global Data for Example 1	4-29
4-1	5 Wiring of the Inputs and Outputs (2)	4-32
4-1		4-34
4-1	Global Data for Example 2	4-37
4-1	8 Wiring of the Inputs and Outputs (3)	4-41
4-1		4-42
4-2	20 Global Data for Example 3	4-43
5-1		5-7
5-2		5-10
5-3		5-12

5-4	Input Parameters of SFB 38	5-13
5-5	Output Parameters of SFB 38	5-14
5-6	Instance DB of SFB 38	5-15
5-7	Events which can Cause a Process Interrupt	5-16
5-8	Start Information of OB 40 for Counter A/B Integrated Function	5-17
5-9	Response Times of the Counter Integrated Function	5-19
6-1	Power Sections and Drives	6-4
6-2	Positioning Operation Sequence	6-15
6-3	Overview of the Function of the Hardware Inputs/Outputs	6-17
6-4	Overview of the Function of the Software Inputs/Outputs	6-17
6-5	"Positioning" Register	6-19
6-6	Controlling Rapid Traverse/Creep Speed Drives	6-22
6-7	Controlling Frequency Converters	6-22
6-8	Terminals for Incremental Encoders and Reference Point Switch	6-24
6-9	Terminals for the Contactor Circuit	6-26
6-10	Terminals for Frequency Converters	6-28
6-11	Input Parameters of SFB 39	6-31
6-12	Output Parameters of SFB 39	6-32
6-13	Starting Synchronization	6-35
6-14	Hardware Synchronization and Resynchronization	6-36
6-15	Special Cases During Synchronization	0.00
0.0	(Frequency Converter)	6-37
6-16	Special Cases During Synchronization	0 0.
0.0	(Contactor Circuit)	6-37
6-17	Selecting Jog Mode	6-38
6-18	Executing a Positioning Operation	6-40
6-19	Positioning Operation for Rapid Traverse/Creep Speed Drive	6-41
6-20	Effects of a Change in CPU Operating State on the Integrated Function .	6-42
6-21	Instance DB of SFB 39	6-43
6-22	Switching the Inputs and Outputs (Example 1)	6-47
6-23	Parameters for Cutting Foil to Length	6-48
6-24	Example 1: Positioning, DB 10 Structure	6-49
6-25	Switching the Inputs and Outputs (Example 2)	6-53
6-26	Parameters for Positioning Paint Cans	6-56
6-27	Example 2: Positioning, DB 2 Structure	6-57
6-28	Switching the Inputs and Outputs (Example 3)	6-61
6-29	Parameters for Positioning a Worktable	6-63
6-30	Example 3: Positioning, Structure of DB 60	6-65
A-1	Technical Specifications for Frequency Meter Integrated Function	A-1
B-1	Technical Specifications for Counter Integrated Function	B-1
C-1	Technical Specifications of the Counter A/B Integrated Function	C-1
D-1	Technical Specifications of the Positioning Integrated Function	D-1
E-1	Troubleshooting	E-1
F-1	Manuals for Programming and Starting Up of the S7-300	F-1
G-1	Selecting the Standard IF Displays	G-7
G-2	Standard Display for the Frequency Meter IF	G-8
G-3	Standard Display for the Counter IF	G-9
G-4	Standard Display for the Counter A/B IF	G-10
G-5	Standard Display for the Positioning IF	G-11
G-6	Names and Functions of the Standard IF Displays	G-14
G-8	ZIF_COUNTER: Items and Variables	G-15
G-9	ZIF_HSC_A or ZIF_HSC_B: Entries and Variables	G-15

G-10	ZIF_POS: Entries and Variables	G-15
G-11	Modifying Operator Guidance	G-16
G-13	Modifying the PLC and the Data Interface to the Instance DB	G-18
G-12	Modifying Displays	G-17

1

Product Overview

In this Chapter

Section	Contents	Page
1.1	Introduction to the Integrated Functions	1-2
1.2	Integrated Functions on the CPU 312 IFM	1-4
1.3	Integrated Functions on the CPU 314 IFM	1-5
1.4	Guide through the Manual for Successful Implementation of an Integrated Function	1-6

1.1 Introduction to the Integrated Functions

Possible Solutions for Your Automa- tion Task	 For counting, frequency measurement and positioning axes, the SIMATIC S7-300 provides the following 3 possible solutions: User program (<i>STEP 7</i> operations) Integrated functions of the CPU 312 IFM/CPU 314 IFM Function modules for counting, frequency measurement and positioning axes
Integrated Functions	The integrated functions are a permanent component of the CPU 312 IFM/ CPU 314 IFM. The inputs and outputs of the integrated functions are hardwi- red to the integrated inputs/outputs of the CPU.
CPU 312 IFM	The CPU 312 IFM provides the following:Frequency Meter integrated functionThe Counter integrated function (up and down counter)
CPU 314 IFM	 The CPU 314 IFM provides the following: Frequency Meter integrated function Counter integrated function (1 up and 1 down counter) Counter A/B integrated function (2 up and 2 down counters, A and B) Positioning integrated function (open-loop positioning)
Properties of the Integrated Functions	The integrated functions operate in parallel to the user program and extend the cycle time of the CPU only minimally. The integrated functions access the integrated inputs/outputs of the CPU direct. The Counter and Counter A/B integrated functions can initiate process interrupts. You can operate and control the integrated functions with an operator panel (OP), programming device or PC. If you use an OP3, standard displays are provided for the integrated functions (see Appendix G).

Selection Criteria In Table 1-1, you will find a comparison of the three possible solutions to your automation task with the main selection criteria:

Table 1-1

Selection Criteria	User Program	Integrated Functions	Function Modules
Direct link to the inputs/out- puts	No	Yes	Yes
Increase in cycle time	Yes	Minimal	No
Suitability for different applications	Low	Medium (50% of solu- tions)	High (95% of solu- tions)
Performance in relation to response time	Low	Medium	High
Handling of process errors (e.g. wire break)	No	Limited	Yes

Selection Criteria for the Automation Task

The Integrated You can use the integrated functions as a low-cost solution to automation **Functions Solution** tasks which do not require the performance capabilities of a function module. **Examples of Fre-**The following examples illustrate the possible applications of the Frequency quency Meter Inte-Meter integrated function: grated Function • Measurement of the rotation speed of a shaft with monitoring of the permissible speed range • Measurement of throughput (items per sample time) with range monitoring Examples of the Below are some possible applications of the Counter and Counter A/B inte-Counter and grated functions: Counter A/B Inte-• Counting a quantity with incoming and outgoing parts (up and down grated Functions counting) Periodic quantity counting with parameterized responses when a compari-٠ son value is reached. Examples of the Below are some possible applications of the Positioning integrated function: **Positioning Inte-**Positioning workpieces on a conveyor belt with synchronization at the grated Function start of the workpiece ٠ Moving a worktable to several positions for machining of a workpiece

1.2 Integrated Functions on the CPU 312 IFM

Introduction	The integrated functions are connected to the automation process via the inte- grated inputs/outputs of the CPU 312 IFM.
Special Integrated Inputs/Outputs	The CPU 312 IFM is equipped with four special integrated inputs/outputs whose functionality can be adjusted. The following alternative settings are possible:
	• 4 interrupt inputs (digital inputs)
	• 4 digital inputs for the Counter integrated function
	• 1 digital input for the Frequency Meter integrated function and 3 standard digital inputs
	Integrated inputs/outputs not used for the integrated function can be used as standard digital inputs/outputs.
Integrated Inputs/ Outputs	The integrated inputs/outputs of the CPU 312 IFM are illustrated in Fig- ure 1-1. The special integrated inputs/outputs are highlighted in gray.
	Integrated inputs/outputs

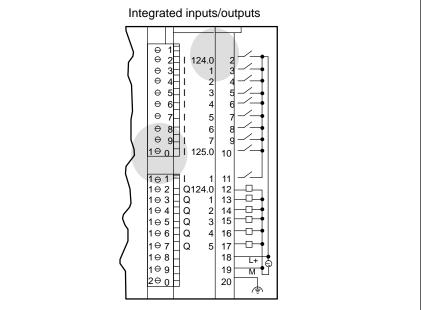


Figure 1-1 Integrated Inputs/Outputs of the CPU 312 IFM for Integrated Functions

1.3 Integrated Functions on the CPU 314 IFM

Introduction	The integrated functions are connected via the integrated inputs/outputs of the CPU 314 IFM with the automation process.
Special Integrated Inputs/Outputs	The CPU 314 IFM is equipped with four special integrated inputs/outputs whose functionality can be adjusted. The following alternative settings are possible:
	• 4 interrupt inputs (digital inputs)
	• 4 digital inputs for the Counter integrated function
	• 4 digital inputs for the Counter A/B integrated function
	• 1 input for the Frequency Meter integrated function and 3 standard digital inputs
	• 3 digital inputs for the Positioning integrated function and 1 standard digi- tal input
	Integrated inputs/outputs not used for the integrated function can be used as standard digital inputs/outputs.
Integrated Inputs/ Outputs	Figure 1-2 shows the integrated inputs/outputs of the CPU 314 IFM. The special integrated inputs/outputs are shaded in gray.
	Integrated inputs/outputs
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

⊖ 7 AO_I 128 ⊖ 8 Al_U 128 ⊖ 9 Al_I 128 <u>1 ⊖ 0</u> Al- 128

 $\begin{array}{c|c} 1 \oplus 1 \\ 1 \oplus 2 \\ A \\ 1 \oplus 2 \\ A \\ 1 \oplus 3 \\ A \\ 1 \oplus 1 \\ 1 \oplus 4 \\ A \\ 1 \oplus 1 \\ 1 \oplus 2 \\ 1 \oplus 6 \\ A \\ 1 \oplus 1 \\ 1 \oplus 2 \\ 1 \oplus 1 \\$

 $\begin{array}{c} 1 \ominus 7 & \text{Al}_{1} & 134 \\ 1 \ominus 9 & \text{Al}_{-} & 134 \\ 2 \ominus 0 & \text{M}_{\text{ANA}} \end{array}$

Figure 1-2 Integrated Inputs/Outputs of the CPU 314 IFM for Integrated	Functions
--	-----------

M 3⊖ 0

IN OUT L+ 301 125.0 302 1 303 2 304 2 005

6 7

М

20 20 20 20 9 6 7

3⊖5 3 4

3⊖6

3⊖7 5

3⊖8

3⊖9 4⊖0

1⊖ 0

1⊖1 1⊖ 2 1⊖ 3 1⊖ 4 1⊖ 5

1⊖6

1⊖7

1⊖8

109

2⊖0

1.4 Guide through the Manual for Successful Implementation of an Integrated Function

Preconditions For the successful implementation of an integrated function, we assume that

- You know how to use the *STEP* 7 programming package.
- You are familiar with the hardware of the CPU 312 IFM or CPU 314 IFM.

The scope and operation of the *STEP* 7 programming package are described in various manuals. You will find a list of the manuals with a brief description of the contents in Appendix F. The hardware of the CPUs and the range of modules are described in the manuals *S7-300 Programmable Controller, Installation and Hardware* and *S7-300, M7-300 Programmable Controllers, Module Specifications.*

Guide In Table 1-2, you will find the operations that you will perform step-by-step in order to start up an integrated function, and the section in the manual which you should read.

Table 1-2Guide through the Manual

Step	Operation	Read	l about the I	ntegrated Fu	nction
		Frequency Meter	Counter	Counter A/B	Positioning
1	Acquire basic knowledge on the behavior and handling of the integrated functions		Cha	pter 2	
2	Parameterize integrated function	Section 3.4	Section 4.4	Section 5.4	Section 6.3
3	Wire integrated function	Section 3.5	Section 4.5	Section 5.5	Section 6.6
4	Program CPUAssign system function blockEvaluate process interrupts	Section 3.6 -	Section 4.6 Section 4.8	Section 5.6 Section 5.8	Section 6.7 -
5	Switch CPU from STOP to RUN			_	
6	Test the integrated function	Section 2.5			
7	Determine the cycle and response time	Section 3.9	Section 4.9	Section 5.9	Section 6.9

Application Examples

Sections 3.10, 4.10 and 6.10 of this manual contain practice-oriented application examples of the integrated functions which will be of special benefit to the first-time SIMATIC S7 user. The application examples have an extremely simple structure and guide the user from the definition of the task through wiring and parameterizing of the integrated function right up to the user program.

What you Should Know about the Integrated Functions

In this Chapter

Section	Contents	Page
2.1	How the Integrated Functions are Included in the CPU 312 IFM/CPU 314 IFM	2-2
2.2	How to Include the Integrated Function in the User Program	2-4
2.3	Functions and Properties of the Instance DB	2-5
2.4	How to Activate and Configure the Integrated Functions	2-6
2.5	How to Test the Integrated Functions	2-7
2.6	How the Integrated Functions Behave on Operating Mode Transitions on the CPU	2-8

2.1 How the Integrated Functions are Included in the CPU 312 IFM/ CPU 314 IFM

Inclusion Figure 2-1 shows the inclusion of the integrated functions in the CPU using the CPU 312 IFM as an example. An explanation is provided in the text following Figure 2.1.

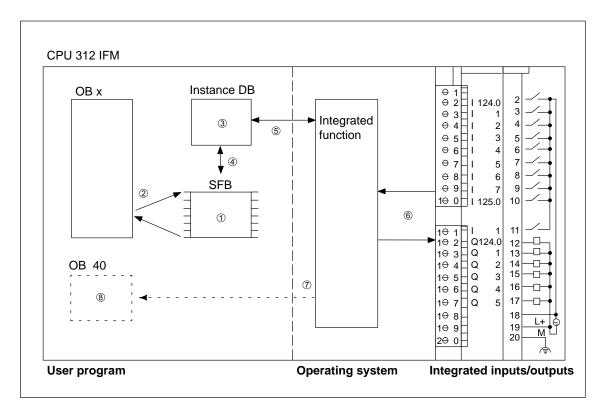


Figure 2-1 Inclusion of the Integrated Functions in the CPU 312 IFM

DescriptionThe integrated functions are a component of the operating system on the
CPU 312 IFM.

When you have assigned the parameters for an integrated function with *STEP* 7, the integrated function is activated.

Table 2-1 contains a description of Figure 2-1.

Table 2-1 Inclusion of the Integrated Functions in the CPU 312 IFM

No.	Description
1	A system function block (SFB) is assigned to each integrated function. The SFBs are integrated in the CPU.
2	The SFB is called from an organization block (OB) in the user program.
3	The instance DB contains the data which are exchanged between the user program and the integrated function.
4	The SFB writes data to the instance DB and reads data from the instance DB.
5	 An integrated function writes to and reads from the instance DB: At the cycle control point (if parameterized with <i>STEP 7</i>) On operating mode transitions When the SFB is called
6	An integrated function accesses the integrated inputs/outputs directly without a detour via the user program. This ensures the lowest response times.
Ø	The Counter and Counter A/B integrated functions can initiate a process interrupt if an event occurs.
8	The user program provides a rapid response to the event in OB 40 (interrupt OB).

2.2 How to Include the Integrated Function in the User Program

Including an Integrated Function	You can use either the STL editor or the LADDER editor under STEP 7 to include an integrated function in your user program. The use of STEP 7 is described in the user manual <i>Standard Software for S7 and M7, STEP 7</i> .
Preconditions	You must already have defined the number of the instance DB in <i>STEP 7</i> . The instance DB must also already exist in your user program.
Calling the SFB	 The SFB for the integrated function can be called from the user program: From any organization block (for example, OB 1, OB 40, OB 100) From any function block (FB) From any function (FC)
Points to Remember when Calling the SFB	 When the SFB is called, input EN (enable) of the SFB must be set, to allow the SFB to be processed (see Section 3.6, for example). Some of the SFB inputs of the integrated functions are edge-controlled. These inputs trigger a reaction when a positive signal edge change takes place. If you do not call the SFB inputs cyclically in the user program, you can generate a positive edge change on the edge-controlled inputs by calling the SFB twice: On the first call, you set the edge-controlled inputs to "0". On the second call, you set the edge-controlled inputs to "1". To find out which SB inputs are edge-controlled, see Sections 3.6, 4.6, 5.6 and 6.7 for each integrated function.
Interrupting the SFB	The SFB cannot be interrupted from higher-priority program execution levels (for example, OB 40). A process interrupt is not executed, for example, until the SFB in OB 1 has been processed. This increases the interrupt response time on the CPU by the time taken to execute the SFB.

2.3 Functions and Properties of the Instance DB

Data Management	The instance DB contains the data which are exchanged between the user program and the integrated function.
Operator Interface	An operator panel (OP) can be connected to a CPU 312 IFM/CPU 314 IFM without a user program. The SFB does not have to be called, because the operator panel accesses the instance DB direct (requirement with the CPU 314 IFM: If you have parameterized updating at the cycle control point with <i>STEP 7</i> ; see Section 3.4).
Retentivity	An integrated function is retentive if, following a power failure, it continues to operate with the status it had immediately before the power failure oc- curred.
Configuring Retentivity	If the integrated function is to be "retentive", you must configure the instance DB as retentive with <i>STEP 7</i> . The parameters for the CPU 312 IFM/CPU 314 IFM are described in the manual <i>S7-300 Programmable Controller, Installation and Hardware</i> in the section entitled "Retentive Areas". How to work with <i>STEP 7</i> is described in the <i>Standard Software for S7 and M7, STEP 7</i> User Manual.
Contents of the Instance DB	The instance DB contains the states of all input and output parameters of the assigned SFB. The integrated function accesses the inputs and outputs of the integrated inputs/outputs of the CPU 312 IFM directly. The states of these inputs and outputs are not stored in the instance DB.
Updating the Instance DB	 The instance DB is updated at the following times: On operating mode transitions on the CPU At the cycle control point (if you have parameterized updating at the cycle control with <i>STEP 7</i>; see Section 3.4) When the corresponding SFB is called

2.4 How to Activate and Configure the Integrated Functions

Introduction	To use an integrated function, you must first activate and then assign the pa- rameters for the integrated function.
Activation/ Configuration	You activate and assign the parameters for the integrated function off-line on a programming device or PC with <i>STEP 7</i> . How to work with <i>STEP 7</i> is described in the <i>Standard Software for S7 and M7</i> , <i>STEP 7</i> User Manual.
"Functions" Register	When parameterizing the CPU with <i>STEP</i> 7 in the "Functions" register, activate one of the following integrated functions:
	• for CPU 312 IFM:
	 Interrupt Inputs
	– Counter
	– Frequency Meter
	• for CPU 314 IFM:
	 Interrupt inputs
	– Counter
	– Parallel counter A/B
	– Frequency Meter
	– Positioning
Description of	You will find a description of the parameters and their value ranges in:
Parameters	• The <i>S7-300 Programmable Controller, Installation and Hardware</i> Manual for the interrupt inputs
	• Section 3.4 for the Frequency Meter integrated function
	• Section 4.4 for the Counter integrated function
	• Section 5.4 for the Counter A/B integrated function
	• Section 6.3 for the Positioning integrated function

2.5 How to Test the Integrated Functions

Introduction	The CPUs provide test functions with which you can monitor and modify
	data and variables of the user program.

Test FunctionsTable 2-2 contains the test functions you can use for the CPU 312 IFM and
CPU 314 IFM.

Test Functions	Use
Status Variable	Monitor the status of selected process variables (inputs, outputs, bit memories, timers, counters, data) at a defined point in the user program
Modify Variable	Assign a value to selected process variables (inputs, outputs, bit memories, timers, counters, data) at a defined point in the user program in order to control the user program.
Status Block	Monitor a block during program execution to assist in the elimina- tion of problems that arise during the compilation of the user pro- gram.
	Status Block presents the status of various elements of the status word, accumulators and registers, in order to indicate which of the operations are active.

Table 2-2 Test Functions for CPU 312 IFM and CPU 314 IFM

Using the Test Functions

The test functions "Status Variable" and "Modify Variable" are described in the user manual *Standard Software for S7 and M7, STEP 7*.

You will find a description of the "Status Block" test function in the manual *Statement List (STL) for S7-300 and S7-400, Programming* or in the manual *Ladder Logic (LAD) for S7-300 and S7-400, Programming*, depending on which programming language you are using.

2.6 How the Integrated Functions Behave on Operating Mode Transitions on the CPU

- **Preconditions** You have activated and assigned the parameters for the integrated function with *STEP* 7.
- **Operating Modes** The behavior of the integrated functions depends directly on the operating mode of the CPU (START, STOP and RUN). Table 2-3 describes the behavior of the integrated functions in the various operating modes of the CPU.

Table 2-3Operating Mode of the CPU

	START	STOP/HOLD	RUN
Integrated function	inactive	inactive	active
Standard function block (for ex- ample, SFB 30)	callable	not callable	callable
Updating the instance DB	when SFB is called	No	at the cycle control point (if parameterized with STEP 7) and when SFB is called
Process interrupts	disabled	disabled	enabled
Inputs of integrated inputs/out- puts	are not evaluated by the integrated function	are not evaluated by the integrated function	are evaluated by the inte- grated function
Outputs of integrated inputs/out- puts	are not affected by the in- tegrated function	are not affected by the in- tegrated function	are affected by the inte- grated function

Operating Mode Transitions

Figure 2-2 illustrates the operation mode transitions of the CPU and the associated actions of the integrated function.

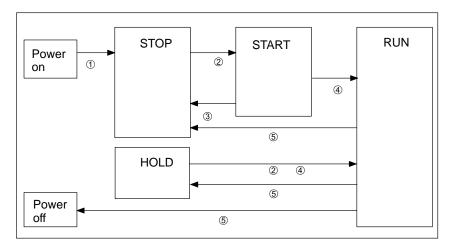


Figure 2-2 Operating Mode Transitions

Description of the Actions

The actions of the operating mode transitions are described in Table 2-4.

Table 2-4Operating Mode Transitions

Action	Description
1	The parameters of the integrated function are checked for completeness and the value range is verified.
2	 Initialization of edge-controlled inputs The edge-controlled inputs are initialized such that the reaction is triggered on the next evaluation of the instance DB with input = 1.
3	If an error is detected during the start-up, the CPU switches to STOP mode.
4	 Start integrated function (transition to active state) The integrated function accepts the values from the instance DB and starts. The outputs are enabled by the operating system. The inputs are evaluated by the integrated function.
5	Stop integrated functionThe output values are updated in the instance DB.The edge-controlled inputs are reset in the instance DB.

3

Frequency Meter Integrated Function

Integrated Inputs/ Outputs

Table 3-1 lists the special integrated inputs/outputs of the CPU 312 IFM and CPU 314 IFM for the Frequency Meter integrated function.

 Table 3-1
 Overview: Integrated Inputs/Outputs for Frequency Meter Integrated

 Function on CPU 312 IFM and CPU 314 IFM

CPU 312 IFM	CPU 314 IFM	Function
I 124.6	I 126.0	Measurement digital input

Note

The CPU 312 IFM is used for examples in this chapter. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated inputs/outputs (see Table 3-1).

Chapter

Section	Contents	Page
3.1	Function Overview	3-2
3.2	How the Frequency Meter Integrated Function Operates	3-3
3.3	Function of the Comparator	3-5
3.4	Assigning Parameters	3-7
3.5	Connecting the Sensors to the Integrated Inputs/Outputs	3-10
3.6	System Function Block 30	3-12
3.7	Structure of the Instance DB	3-14
3.9	Calculating the Cycle Time	3-17
3.10	Example Applications	3-18

3.1 Function Overview

Introduction	In this section, you will find an overview diagram (block diagram) for the Frequency Meter integrated function. The block diagram contains the main components of the integrated function and all its inputs and outputs.
	Sections 3.2 and 3.3 refer to the block diagram. These sections describe the interaction of the main components of the Frequency Meter integrated function and their inputs and outputs.
Purpose of the In- tegrated Function	The Frequency Meter integrated function enables continuous measurement of a frequency ≤ 10 kHz.
Block Diagram	Figure 3-1 shows the block diagram for the Frequency Meter integrated func-

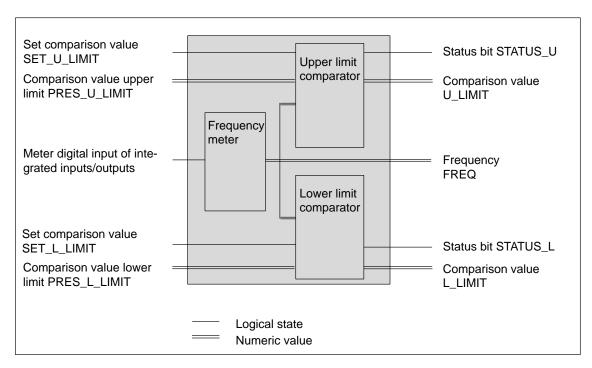


Figure 3-1 Block Diagram for Frequency Meter Integrated Function

tion:

3.2 How the Frequency Meter Integrated Function Operates

Frequency Meter	The Frequency Meter calculates the current frequency from the measured signal and the sample time.		
	The measured signal is connected via the Meter digital input of the integrated CPU inputs/outputs. The Frequency Meter counts the positive edges of the measured signal within a sample time in order to calculate the frequency.		
Different Measu- ring Principles	The CPU calculates the frequency according to two different measuring principles:		
	• Measuring principle 1 is applied with a sample time of 0.1 s, 1 s or 10 s		
	• Measuring principle 2 is applied with a sample time of 1 ms, 2 ms or 4 ms		
Measuring Principle 1	The Frequency Meter calculates the frequency according to the following formula:		
	$Frequency = \frac{Number of positive edges}{Sample time}$		
Measuring Principle 2	The Frequency Meter calculates the frequency by measuring the time interval between two incoming positive edges at the meter's digital input.		
Sample Time	You configure the sample time with <i>STEP</i> 7. You can choose between a sample time of 1 ms, 2 ms, 4 ms, 0.1 s, 1 s or 10 s. The measurement process is restarted immediately after the sample time expires, with the result that the current frequency is always available.		
Example	The sample time is 1 s. 6500 positive edges were counted during one sample period.		
	Frequency $= \frac{6500}{1 \text{ s}} = 6500 \text{ Hz}$		
Properties of Mea- suring Principle 1	The sample times from 0.1 s to 10 s were introduced for the measurement of high frequencies. The higher the frequency, the more accurate the result of the measurement. With high frequencies, this measuring principle is associated with:		
	High measurement accuracy		
	• Low load on the cycle		

Properties of Measuring Principle 2
The sample times from 1 s to 4 s were introduced for the measurement of low frequencies. The lower the frequency, the more accurate the result of the measurement. With low frequencies, this measuring principle is associated with:
High measurement accuracy
High-speed response to process events (e.g. process interrupt triggering)
A high load on the cycle

• A high load on the cycle

Display of First Valid Frequency Value When the CPU is started or HOLD mode is deactivated, OB 1 is executed and the Frequency Meter integrated function is started simultaneously.

With measuring principle 1, the 1st valid frequency is calculated after the 1st sample period.

With measuring principle 2, the 1st valid frequency is calculated, at the latest, after twice the sample time or according to the formula 2 x 1/measured frequency (the larger of the two values applies).

With both measuring principles, the frequency is -1 until the valid frequency is calculated.

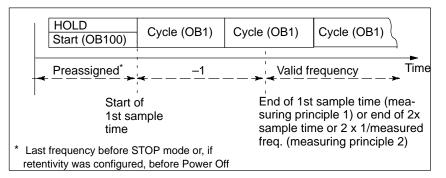


Figure 3-2 Display of First Valid Frequency Value

Limit Frequency Exceeded

The Frequency Meter integrated function is designed for a maximum frequency of 10 kHz.

Warning

If the current frequency exceeds the frequency limit of 10 kHz:

- Correct operation of the integrated function is no longer assured
- The cycle load is increased
- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog intervenes, the CPU switches to STOP.

3.3 Function of the Comparator

Comparator	The Frequency Meter integrated function has two integrated comparators with which you can monitor adherence to a specific frequency range.
Upper Limit Comparator	The upper limit comparator intervenes if the frequency FREQ exceeds a de- fined comparison value U_LIMIT. In this case, status bit STATUS_U at SFB 30 is enabled.
Lower Limit Comparator	The lower limit comparator intervenes if the frequency FREQ falls below a defined comparison value L_LIMIT. In this case, status bit STATUS_L at SFB 30 is enabled.
Evaluation of the Status Bits	You can evaluate the status bits in your user program. Until the first valid frequency value is displayed, the signal state of the status bits at SFB 30 is 0.
Configurable re- sponses with sam- ple times of 1, 2 or 4 ms	If the value exceeds the U_LIMIT comparison value or falls below the L_LIMIT comparison value, a corresponding process interrupt is triggered if configured in <i>STEP</i> 7 (sample time 1, 2 or 4 ms and process interrupt activated).

Function of the Comparator

Figure 3-3 illustrates the function of the comparator. The gray areas indicate when a lower or upper limit is exceeded.

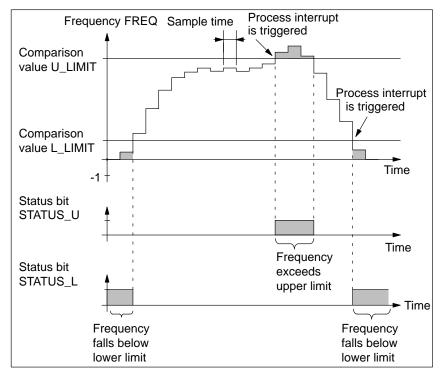


Figure 3-3 Function of the Comparator

Defining New Comparison Values

You can define new comparison values for the upper and lower limits in the input parameters PRES_U_LIMIT and PRES_L_LIMIT at SFB 30. The new comparison values are accepted by the comparator when positive edges occur on the input parameters SET_U_LIMIT or SET_L_LIMIT at SFB 30.

If, after defining a new comparison value for the upper/lower limit, the frequency exceeds or falls below this limit, a process interrupt is triggered (provided you have activated the process interrupt with *STEP 7*).

3.4 Assigning Parameters

Parameter Assignment with STEP 7 You assign the parameters for the integrated function with *STEP* 7. How to work with *STEP* 7 is described in the manual *Standard Software for S7 and M7*, *STEP* 7.

Parameters and their Value Ranges

Table 3-2 lists the parameters for the Frequency Meter integrated function.

Parameter	Description	Value Range	Default Setting
Number of instance DB	The instance DB contains the data which are exchanged between the inte- grated function and the user program.	1 to 63 CPU 314 IFM 1 to 127	62
Sample time	The sample time is the time interval in which the integrated function calcu- lates a current frequency value.	0.1 s; 1 s; 10 s; 1 ms; 2 ms; 4 ms	1 s
Automatic updating at the cycle control point ¹	You determine whether the instance DBs of the integrated function are to be updated at the cycle control point	Activated/ deactivated	Activated
Value Falls B	elow Lower Limit		
Process inter- rupt ²	You can set that a process interrupt is triggered if the actual value falls below the comparison value L_LIMIT.	Activated/ deactivated	Deactivated
Value Exceeds Upper Limit			
Process inter- rupt ²	You can set that a process interrupt is triggered if the actual value exceeds the comparison value U_LIMIT.	Activated/ deactivated	Deactivated

 Table 3-2
 "Integrated Inputs/Outputs" Parameter Block

Parameter can only be assigned in the CPU 314 IFM. In the CPU 312 IFM, the parameter is automatically activated

² Process interrupt can only be set with configured sample times of 1, 2 and 4 ms

Measurement Resolution with Sample Times of 0.1 s, 1 s and 10 s

The measurement resolution increases with every increase in the sample time. Table 3-3 illustrates the relationship of the measurement resolution to the configured sample time.

Sample Time	Resolution	Example of Positive Edges during 1 Sample Period	Frequency
0.1 s	The frequency can be calcu-	900	9000 Hz
	lated in 10 Hz steps	901	9010 Hz
1 s	The frequency can be calcu- lated in 1 Hz steps	900	900 Hz
lat		901	901 Hz
10 s	The frequency can be calcu-	900	90 Hz
	lated in 0.1 Hz steps	901 90.1	90.1 Hz

Table 3-3Measurement Resolution with Sample Times of 0.1 s; 1 s and 10 s

Disadvantage of a Large Sample Time

Measurement

Accuracy with

Sample Times of

0.1 s, 1 s and 10 s

The Frequency Meter calculates the frequency at larger intervals. This means a current frequency value is available less often when the sample time is large.

The accuracy of measurement depends on the measured frequency and the sample time.

Table 3-4 shows the maximum measurement error at the frequency limit of 10 kHz with the configurable sample times.

Table 3-4	Measurement Accuracy with Sample Times of 0.1 s; 1 s and 10 s

Frequency	Sample Time	Maximum Measurement Error in % of Measured Value
10 kHz	0.1 s	1.1 %
10 kHz	1 s	0.11 %
10 kHz	10 s	0.011 %

Calculation of the Measurement Error with Sample Times of 0.1 s, 1 s and 10 s You can use the following formula to calculate the maximum measurement error of your measured frequency:

Max. error in % of meas. val. = $\frac{0.001 \text{ s} + \frac{1}{\text{Frequency in Hz}}}{\text{Sample time in s}} \times 100 \%$

Due to the measuring principle, the measurement error increases as the measured frequency decreases.

Measurement Resolution with Sample Times of	The internal arithmetical resolution of the time measurement between two positive edges is always the same, i.e. $=1$ mHz, for a configured sample time of 1 ms, 2 ms or 4 ms.	
1 ms, 2 ms and 4 ms	Please note: Frequencies < 20 mHz cause a frequency value of 0 to be output.	
Measurement Accuracy with Sample Times of	The accuracy of measurement depends on the measured frequency and the sample time. The measurement accuracy increases as the frequency decreases and the sample time increases.	
1 ms, 2 ms and 4 ms	Table 3-5 shows the maximum measurement error at the frequency limit of 10 kHz with the configurable sample times.	

Frequency	Sample Time	Maximum Measurement Error in % of Measured Value
10 kHz	1 ms	5 %
10 kHz	2 ms	2 %
10 kHz	4 ms	1 %

Table 3-5Meas. Accuracy with Sample Times of 1 ms; 2 ms & 4 ms

Calculation of the Measurement Error with Sample Times of 1 ms, 2 ms and 4 ms	You can use the following formula to calculate the maximum measurement error of your measured frequency: Max. error = \pm frequency in Hz × factor in % / 100 \pm 0.001 Hz
Factor in %	The factor used to calculate the measurement error in the above formula depends on the CPU.
	The factor cannot exceed a maximum value. In other words, if the formula in the table below yields a factor for your application which is larger than the maximum factor, you must use the maximum factor in the formula in order to calculate the measurement error.

СРИ	Formula for Factor Calculation	Max. Factor for Sample Time of		le Time of:
		1 ms	2 ms	4 ms
CPU 312 IFM	$(0.01 + 0.0018 \text{ s} \times \text{frequency in Hz}) \%$	5 %	2 %	1 %
CPU 314 IFM	$(0.01 + 0.0012 \text{ s} \times \text{frequency in Hz}) \%$	3.5 %	1.5 %	0.75 %

Table 3-6	Factor for Calculating the Max. Measurement Error for IF Frequency Meter
-----------	--

3.5 Connecting the Sensors to the Integrated Inputs/Outputs

Introduction The CPU 312 IFM is used as a wiring example. The example can be implemented in the same way with the CPU 314 IFM using another integrated input/output (see Table 3-1).

Terminals The terminals of the integrated inputs/outputs on the CPU 312 IFM for the Frequency Meter integrated function are listed in Table 3-7.

Table 3-7 Terminals for the Sensors (CPU 312 IFM)

Terminal	Identifier	Description
8	I 124.6	Meter
18	L+	Supply voltage
19	М	Ground

Terminal Connection Model

Figure 3-4 illustrates the connection of the sensor (for example, BERO) to the integrated inputs/outputs of the CPU 312 IFM

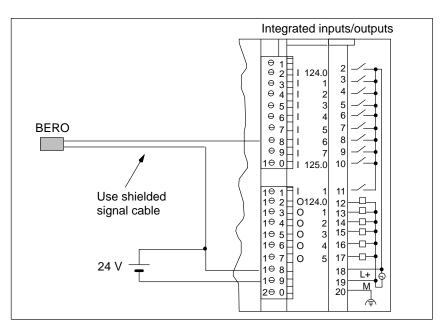


Figure 3-4 Sensor Wiring (CPU 312 IFM)

Shielding You must use a shielded signal cable to connect the sensor and you must connect the cable shield to ground. Use the shield connecting element for this purpose.

You will find more detailed information on the installation of the cable shield in the manual *S7-300 Programmable Controller, Installation and Hardware*.

3.6 System Function Block 30

SFB 30 The Frequency Meter integrated function is assigned to SFB 30. A graphical illustration of SFB 30 is shown in Figure 3-5.

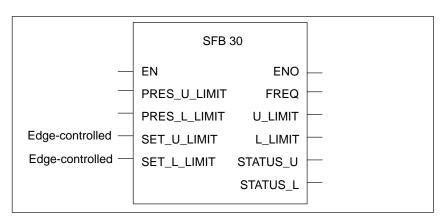


Figure 3-5 Graphical Illustration of SFB 30

Input Parameters In Table 3-8 you will find a description of the input parameters of SFB 30. of SFB 30

Table 3-8Input Parameters of SFB 30

Input Parameter	Description	
EN	EN is the input parameter for enabling SFB 30. This input parameter causes the SFB to be executed. The input parameter has no effect on the execution of the integrated function. The SFB is executed as long as $EN = 1$. When $EN = 0$, the SFB is not executed.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	
PRES_U_LIMIT	You can use this input parameter to store a new PRES_U_LIMIT comparison value. It is accepted following a positive edge on the input parameter SET_U_LIMIT.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
PRES_L_LIMIT	You can use this input parameter to store a new PRES_L_LIMIT comparison value. It is accepted following a positive edge on the input parameter SET_L_LIMIT.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
SET_U_LIMIT	Following a positive edge, comparison value PRES_U_LIMIT is accepted. The status bit STA-TUS_U is also set simultaneously in accordance with the new comparison value.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	

Input Parameter	Description	
SET_L_LIMIT	Following a positive edge, comparison value PRES_L_LIMIT is accepted. The status bit STA-TUS_L is also set simultaneously in accordance with the new comparison value.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	

— 11 — 0	
Table 3-8	Input Parameters of SFB 30, continued

Output Parameters In Table 3-9 you will find a description of the output parameters of SFB 30. **of SFB 30**

Table 3-9	Output Parameters	of SFB 30
	output i urumeters	01 51 5 50

Output Parameter	Description		
ENO	Output parameter ENO indicates whether an error occurred during execution of the SFB. If ENO = 1, no error occurred. If ENO = 0, the SFB was not executed or an error occurred during execution.		
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D		
FREQ	The measured frequency is output in mHz in this parameter.		
	Data type: DINT Address ID: I, Q, M, Value range: from -1 to 10000000 L, D		
U_LIMIT	The current U_LIMIT comparison value is output in this output parameter.		
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D		
L_LIMIT	The current L_LIMIT comparison value is output in this output parameter.		
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D		
STATUS_U	The output parameter STATUS_U indicates the position of the frequency relative to the comparison value U_LIMIT:		
• Frequency FREQ > comparison value U_LIMIT: output parameter STATUS			
	• Frequency FREQ \leq comparison value U_LIMIT: output parameter STATUS_U not enabled		
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D		
STATUS_L	The output parameter STATUS_L indicates the position of the frequency relative to the comparison value L_LIMIT:		
	• Frequency FREQ \geq comparison value L_LIMIT: output parameter STATUS_L not enabled		
	• Frequency FREQ < comparison value L_LIMIT: output parameter STATUS_L enabled		
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D		

3.7 Structure of the Instance DB

Instance DBTable 3-10 shows you the structure and the assignment of the instance DB forof SFB 30the Frequency Meter integrated function.

Operand	Symbol	Meaning
DBD 0	PRES_U_LIMIT	Upper limit comparison value (new)
DBD 4	PRES_L_LIMIT	Lower limit comparison value (new)
DBX 8.0	SET_U_LIMIT	Set upper limit comparison value
DBX 8.1	SET_L_LIMIT	Set lower limit comparison value
DBD 10	FREQ	Frequency
DBD 14	U_LIMIT	Upper limit comparison value (current)
DBD 18	L_LIMIT	Lower limit comparison value (current)
DBX 22.0	STATUS_U	Upper limit status bit
DBX 22.1	STATUS_L	Lower limit status bit

Table 3-10 Instance DB of SFB 30

Length of the Instance DB

The data for the Frequency Meter integrated function are 24 bytes in length and begin at address 0 in the instance DB.

3.8 Evaluation of Process Interrupts

Introduction	The Frequency Meter integrated function triggers process interrupts on the occurrence of certain events; provided you have configured a sample time of 1 ms, 2 ms or 4 ms with <i>STEP</i> 7 and have activated the process interrupts.
Configurable Events	The events which can result in a process interrupt are listed in Table 3-11 together with the parameters you must assign in <i>STEP 7</i> .

Table 3-11 Events which can Cause a Process Interrupt

Process Interrupt on	Description	Configuration
Actual value falling below comparison value lower limit	A process interrupt is triggered if the actual value falls below the comparison value lower limit	Falls below comparison value lower limit: process interrupt ac- tivated
Actual value exceeding com- parison value upper limit	A process interrupt is triggered if the actual value exceeds the comparison value upper limit	Exceeds comparison value up- per limit: process interrupt acti- vated

Process Interrupt OB	When a process interrupt occurs, the process interrupt OB (OB 40) is called up. The event which has invoked OB 40 is stored in the start information (de- claration section) of the OB 40.
Start Information of OB 40 for Inte- grated Function	Table 3-12 shows the relevant temporary (TEMP) variables of OB 40 for the Frequency Meter Integrated Function of the CPU 312 IFM/314 IFM. You will find a description of OB 40 in the <i>System and Standard Functions</i> Reference Manual.

Table 3-12 Start Information of OB 40 for Frequency Meter Integrated Function

Variable	Data Type	Description	
OB40_MDL_ADDR	WORD	B#16#7C	Display in local data word 6:
			• Address of module which triggered interrupt (in this case the CPU)
OB40_POINT_ADDR	DWORD	see Figure 3-6	Display in local data double word 8:
			• Integrated function which triggered interrupt
			• Event which triggered interrupt

Display of the Event which Triggered the Interrupt

From the variable OB40_POINT_ADDR you can read which Integrated Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8.

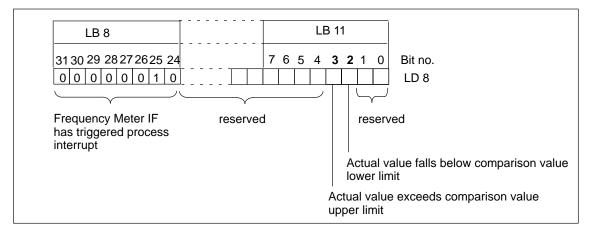


Figure 3-6 Start Information of OB 40: Which Event Triggered Interrupt (Frequency Meter)?

Evaluation in User Program

The evaluation of process interrupts in the user program is described in the Programming Manual *System Software for S7-300/400, Program Design.*

3.9 Calculating the Cycle Time

Introduction	The calculation of the cycle time for the CPUs is described in detail in the manual <i>S7-300 Programmable Controller, Installation and Hardware</i> . The following paragraphs describe the times which must be included in the calculation when the Frequency Meter integrated function is running.
Calculation	You can calculate the cycle time with the following formula:
	Cycle time = $t_1 + t_2 + t_3 + t_4$
	$t_1 = Process image transfer time (process output image and process input image)^1$
	t_2 = Operating system runtime including load generated by an executing integrated function ¹
	$t_3 =$ User program execution time ² including the SFB runtime when an SFB call is made in the program cycle ³
	t ₄ = Updating time of the instance DB at the cycle control point (if updating parameterized with STEP 7)
Runtime of SFB 30	The runtime of SFB 30 is typically 220 µs.
Instance DB Updating Time	The updating time of the instance DB at the cycle control point is 100 μ s for the Frequency Meter integrated function.
Increased Cycle	Please note that the cycle time can be increased due to:
Time	Time-controlled execution
	• Interrupt handling
	Diagnostics and error handling
Response Time	The following applies for the IF frequency meters: Response time = Process interrupt response time. The process interrupt response time is the period that elapses between violation of the current comparison value to the processing of the OB 40. With the parameterited measuring time of 1, 2 or 4 ms, the respone time is calculated as follow:
	• Process interrupt response time when violating the upper comparison va- lue < 1ms + measuring time
	• Process interrupt response time when violating the lower comparison va- lue > 1ms + measuring time + 1 / lower limit frequency
¹ Please refer to the m time required for the	anual S7-300 Programmable Controller, Installation and Hardware for the CPU 312 IFM.

- 2 You have to determine the user program execution time, because it depends on your user program.
- ³ If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

3.10 Example Applications

In this section, you will find two example applications for the Frequency Meter integrated function. The first example contains a routine for monitoring the speed of a drive within a defined speed range.

The second example is an extension of the first. The user can change the speed range; two lamps are used to indicate which speed range is set.

Note

The CPU 312 IFM is used for the application examples. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated inputs/outputs (see Table 3-1).

In this Section

In this Section

Section	Contents	Page
3.10.1	Speed Monitoring within a Fixed Speed Range	3-19
3.10.2	Speed Monitoring within Two Speed Ranges	3-26

3.10.1 Speed Monitoring within a Fixed Speed Range

Task

A shaft rotates at an approximately constant speed. The speed of the drive is measured using a light barrier, and the Frequency Meter checks that the speed is within a defined range. If the permissible speed range is exceeded (960 \leq n \leq 1080 rpm), a reaction is triggered by the user program:

- Speed above permissible level: red lamp lights up
- Speed below permissible level: yellow lamp lights up

Wiring The technology and wiring of the speed monitoring system are shown in Figure 3-7.

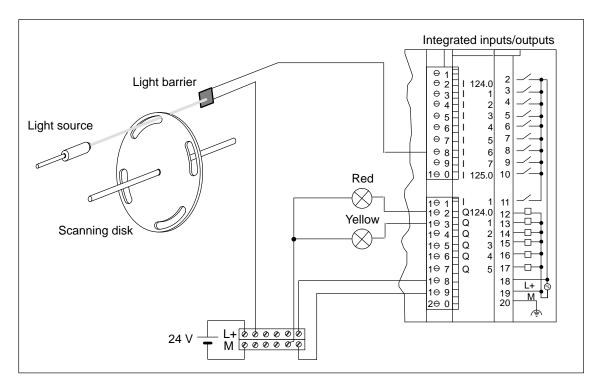


Figure 3-7 Speed Monitoring of a Shaft (1)

Design of the Scanning Disk

In Figure 3-7, the scanning disk has four elongated holes of equal length, positioned symmetrically on the disk. The actual frequency is therefore a quarter of the measured frequency.

Why Elongated Holes?	The light slots are measured by the light barrier and transmitted as a mea- sured signal to the Meter digital input.		
	detected relia	bly by the Fre	pposed of 1 pulse time + 1 pulse interval. It is only equency Meter if the pulse time $\geq 50 \ \mu s$ and the Appendix A).
			pproaches the frequency limit of 10 kHz, the fol- ained for the fulfilment of the above condition:
	Pulse time : p	ulse interval =	= 1 : 1
	In our examp	le:	
	• 1 pulse tir	ne = 1 light sl	ot
	• 1 pulse in	terval = 1 area	a without a light slot
		-	imum pulse time/pulse interval ratio through the light slots on the scanning disk. The following
	Length of a li	ght slot = leng	gth of an area without a light slot
Function of the In- puts and Outputs	Table 3-13 lis	sts the function	ns of the inputs and outputs for the example.
	Table 3-13	Wiring of the	Inputs and Outputs (1)
	Terminal	Input/ Out-	Function in Example

Terminal	Input/ Out- put	Function in Example
8	I 124.6	The positive edges of the signal are measured.
		1 light slot on the scanning disk corresponds to 1 posi- tive edge.
12	Q 124.0	The output is enabled when the upper limit comparison value is exceeded.
		The red lamp lights up when the speed is > 1080 rpm.
13	Q 124.1	The output is enabled when the value falls below the lower limit comparison value.
		The yellow lamp lights up when the speed is < 960 rpm. This is the case during start-up, for example, while the shaft drive has not yet reached its permissible speed.
18	L+	24 VDC supply voltage
19	М	Reference potential of the supply voltage

Sequence Diagram The sequence diagram in Figure 3-8 illustrates the relationship between the speed and the digital outputs.

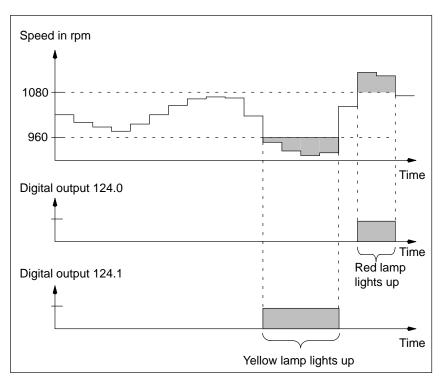


Figure 3-8 Sequence Diagram for Example 1

Parameter Assignment with STEP 7

You set the parameters for the CPU as follows with *STEP* 7:

 Table 3-14
 Parameters for the Frequency Meter Example

Parameter	Input	Description
No. of instance DB	62	Instance DB for the example (default value)
Sample time	4 s	Time interval in which the IF calculates the current frequency value
Automatic updating at the cycle control point ¹	Activated	The instance DB is updated at each cycle control point.

¹ Only necessary with CPU 314 IFM input

Calculation of the	Table 3-15 illustrates the calculation of the comparison values for the exam-
Upper and Lower	ple.
Limit Comparison Values	Further on in the example, you will find out how to pass the comparison val-
values	ues to SFB 30 from the user program.

Table 3-15	Determination	of the C	Comparison	Values
10010 5 15	Determination	or the c	companson	varaes

Comparison Value	Speed	Frequency at a Configured Sam- ple Time of 10 s	Upper/Lower Limit Comparison Value for SFB 30
Upper limit	1080 rpm	$\frac{1080}{60} = 18\frac{1}{s} = 18$ Hz	18 Hz × 4 (light slots) = 72 Hz Input parameter PRES_U_LIMIT for SFB 30 (in mHz): 72000
Lower limit	960 rpm	$\frac{960}{60} = 16\frac{1}{s} = 16$ Hz	16 Hz × 4 (light slots) = 64 Hz Input parameter PRES_L_LIMIT for SFB 30 (in mHz): 64000

Initialization of SFB 30

SFB 30 is called at startup from OB 100 and initialized once. The comparison values are transferred to SFB 30 in MHz.

SFB 30 is illustrated in Figure 3-9 with the initialized input parameters.

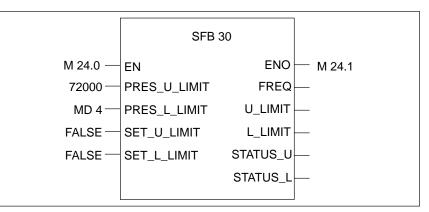


Figure 3-9 Initialization of SFB 30 at Start-Up (1)

Cyclic Calling of SFB 30

SFB 30 is called cyclically in OB 1. The assignment of SFB 30 is illustrated in Figure 3-10.

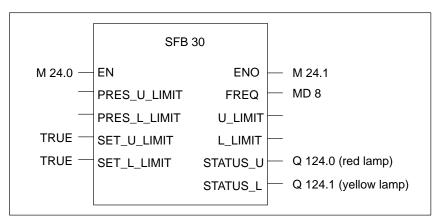


Figure 3-10Initialization of SFB 30 in the Cyclic Program (1)

Status Bits in the User Program	If the upper or lower limit of the speed range is exceeded, the corresponding status bit of SFB 30 is enabled.
	When status bit STATUS_U (upper limit exceeded) is enabled, the red lamp is actuated with output 124.0.
	When status bit STATUS_L (lower limit exceeded) is enabled, the yellow lamp is enabled with output 124.1.
	As long as no valid frequency is available, the signal state of the status bits is 0.
Output Parameter FREQ	The output parameter FREQ outputs the actual measured frequency. You can evaluate the frequency in the user program. Because of the four light slots, you must divide the frequency by four to obtain the actual frequency and thus the speed of the shaft (implemented in the following user program).
Instance DB of SFB 30	In the example, the data are stored in instance DB 62.
User Program	In the following section, you will find the user program for the example. The program was created with the <i>Statement List Editor in STEP 7</i> .

Global Data Used

Table 3-16 shows the global data used in the user program.

Global Data	Meaning
MD 4	Comparison value (new)
MD 8	Current measured frequency
MD 12	Actual shaft speed in 1/min
M 24.0	Enable SFB 30 execution
M 24.1	Store BR bit (= output parameter ENO of SFB 30)
A 124.0	Actuate red lamp
A 124.1	Actuate yellow lamp

Table 3-16	Global Data for Example 1
------------	---------------------------

OB 100	Statement
Section	

.

You enter the following statement list (STL) user program in the statement section of OB 100:

STL (C	DB 100)		Explanation
Networ	rk 1		
	L	L#64000	Define comparison value PRES_L_LIMIT in
	Т	MD 4	MD 4 (monitoring possible with STATUS
			VAR)
	SET		Enable SFB 30 execution
	=	м 24.0	
	A	м 24.0	If M 24.0 = 1, i.e. EN = 1 at SFB 30,
			SFB is executed;
	JNB	m01	If RLO = 0, jump to m01
	CALL	SFB 30, DB 62	Call SFB 30 with instance DB
	PRES_U_LIMIT:	= L#72000	Define comparison value PRES_U_LIMIT
	PRES_L_LIMIT:	= MD 4	Assign to MD 4
	SET_U_LIMIT:	= FALSE	<pre>SET_U_LIMIT = 0, to generate pos. edge</pre>
			in OB 1
	SET_L_LIMIT:	= FALSE	<pre>SET_L_LIMIT = 0, to generate pos. edge</pre>
			in OB 1
	FREQ:	=	
	U_LIMIT:	=	
	L_LIMIT:	=	
	STATUS_U:	=	
	STATUS_L:	=	
m01:	А	BR	Query BR bit (= ENO at SFB 30) for
			error evaluation
	=	м 24.1	

OB 1 Statement	You enter the following STL user program in the statement section of OB 1:
Section	

STL (OF	-				Explanation
Networl	c 1				
	•				Individual user program
	•				
	A			M 24.1	If M 24.1 = 1, i.e. $EN = 1$ at SFB 30,
					SFB is executed;
	JNB			m01	If RLO = 0, jump to m01
	CALL			SFB 30, DB 62	Call SFB 30 with instance DB
	PRES	U_LIM	IT:	=	
	PRES	L_LIM	IT:	=	
	SET_	U_LIMI	Г:	= TRUE	Set comparison values with pos. edge
	SET_	L_LIMI	Г:	= TRUE	Current measured frequency is stored is
	FREÇ	2:		= MD 8	MD 8
	U_LI	MIT:		=	
	L_L	MIT:		=	
	STAT	rus_u:		= A 124.0	If Q 124.0 = 1, red lamp lights up
	STAT	US_L:		= A 124.1	If Q 124.1 = 1, yellow lamp lights up
m01:	A			BR	Query BR bit (= ENO at SFB 30) for er-
	=			M 24.1	ror evaluation
	L	MD	8		End if valid speed value has not been read
	L	L#-1			
	==D				
	BEC				
	L			MD 8	Convert measured frequency to actual
	L			4000	shaft speed
	/D				-
	L			L#60	
	- *D				
	т			MD 12	Speed is stored in MD 12 in decimal format in 1/min.

3.10.2 Speed Monitoring within Two Speed Ranges

Introduction	The following example is an extension of the example in Section 3.10.1. All functions which are identical in the two examples are therefore listed in Section 3.10.1. The following text contains references to the appropriate points in Section 3.10.1.
Task	A shaft rotates at an approximately constant speed. The speed of the drive can be set at two levels. It is measured by a light barrier and monitored by the Frequency Meter integrated function. The user can switch between the two speed ranges with a pushbutton switch. When the CPU is switched on, the speed range is set to setting 1.
	Permissible speed range 1: $960 \le n \le 1080 \text{ rpm}$
	Permissible speed range 2: $1470 \le n \le 1520 \text{ rpm}$
	When the speed range is violated, a reaction is triggered by the user program:
	• Speed above permissible range 1: red lamp 1 lights up
	• Speed below permissible range 1: yellow lamp 1 lights up
	• Speed above permissible range 2: red lamp 2 lights up
	• Speed below permissible range 2: yellow lamp 2 lights up

Wiring The technology and wiring of the speed monitoring system are shown in Figure 3-11.

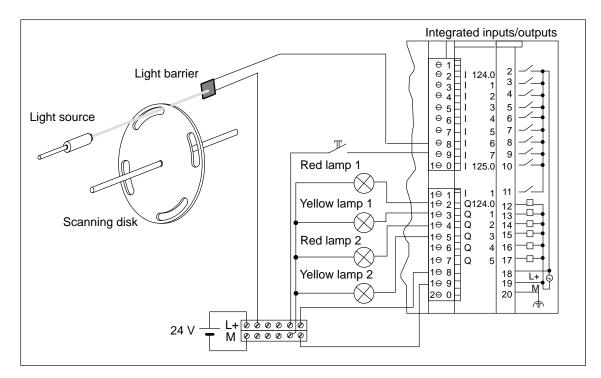


Figure 3-11 Speed Monitoring of a Shaft (2)

Function of the Inputs and Outputs

Table 3-17 lists the functions of the inputs and outputs for the example.

Table 3-17Wiring of the Inputs and Outputs (2)

Terminal	Input/ Output	Function in Example
8	I 124.6	The positive edges of the signal are measured. 1 light slot on the scanning disk corresponds to 1 positive edge.
9	I 124.7	The permissible speed range is changed from 1 to 2, or vice-versa, by pressing the pushbutton.
12	Q 124.0	The output is enabled when the upper limit comparison value of speed range 1 is exceeded. Red lamp 1 lights up when the speed is > 1080 rpm.
13	Q 124.1	The output is enabled when the value falls below the lower limit comparison value of speed range 1. Yellow lamp 1 lights up when the speed is < 960 rpm.

Terminal	Input/ Output	Function in Example
14	Q 124.2	The output is enabled when the upper limit comparison value of speed range 2 is exceeded. Red lamp 2 lights up when the speed is > 1520 rpm.
15	Q 124.3	The output is enabled when the value falls below the lower limit comparison value of speed range 2. Yellow lamp 2 lights up when the speed is < 1470 rpm.
18	L+	24 VDC supply voltage
19	М	Reference potential of the supply voltage

Tabelle 3-17	Wiring of the Inputs and Out	outs (2). Continued
rubene 5 17	while of the inputs and out	Juis (2), Commuca

Sequence Diagram for Speed Range 2

The sequence diagram in Figure 3-12 illustrates the relationship between speed range 2 and the associated digital outputs. You will find the sequence diagram for speed range 1 in Section 3.10.1.

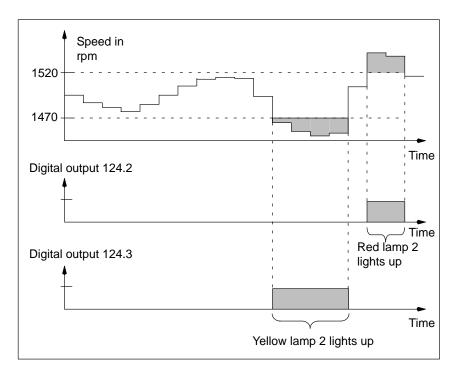


Figure 3-12 Sequence Diagram for Example 2

Parameter Assign- ment with <i>STEP 7</i>	You set the parameters for the CPU with <i>STEP</i> 7 as listed in Section 3.10.1.
Calculation of the Upper and Lower Limit Comparison	Table 3-18 illustrates the calculation of the comparison values for speed range 2. You will find the calculation of the comparison values for speed range 1 in Section 3.10.1.
Values	Further on in the example, you will find out how to pass the comparison values to SFB 30 from the user program.

 Table 3-18
 Determination of the Comparison Values for Speed Range 2

Comparison Value	Speed	Frequency at a Configured Sample Time of 10 s	Upper/Lower Limit Comparison Value for SFB 30
Upper limit	1520 rpm	$\frac{1520}{60} \approx 25.3 \frac{1}{s} \approx 25.3 \text{ Hz}$	25.3 Hz \times 4 (light slots) \approx 101 Hz Input parameter PRES_U_LIMIT for SFB 30 (in mHz): 101000
Lower limit	1470 rpm	$\frac{1470}{60} = 24.5 \frac{1}{s} = 24.5 \text{ Hz}$	24.5 Hz × 4 (light slots) = 98 Hz Input parameter PRES_L_LIMIT for SFB 30 (in mHz): 98000

Initialization of SFB 30

SFB 30 is called from OB 100 twice on start-up and initialized. The comparison values for speed range 1 are transferred to SFB 30 in MHz.

Figure 3-13 shows SFB 30 (2nd call in OB 100) with the initialized input parameters.

	SFB 30	
M 24.0	EN ENO	— M 24.1
72000 —	PRES_U_LIMIT FREQ	
64000 —	PRES_L_LIMIT U_LIMIT	
TRUE —	SET_U_LIMIT L_LIMIT	
TRUE —	SET_L_LIMIT STATUS_U	
	STATUS_L	

Figure 3-13 Initialization of SFB 30 on Start-Up (2)

Cyclic Calling
of SFB 30SFB 30 is called cyclically in OB 1. The new comparison values can be
passed to SFB 30 in mHz.

Figure 3-14 shows SFB 30 with the input and output parameters.

Pressing of the momentary-contact switch (I 124.7) generates edges at the input parameters SET_U_LIMIT and SET_L_LIMIT. As soon as the edges occur, the comparison values for speed range 2, for example, are accepted by the SFB 30.

	SFB 30	
M 24.0 —	EN ENO	— M 24.1
	PRES_U_LIMIT FREQ	— MD 8
	PRES_L_LIMIT U_LIMIT	— MD 12
l 124.7 —	SET_U_LIMIT L_LIMIT	— MD 16
l 124.7 —	SET_L_LIMIT STATUS_U	— M 100.1
	STATUS_L	— M 100.2

Figure 3-14 Initialization of SFB 30 in the Cyclic Program (2)

Switching to Speed Range 1	When the pushbutton (I 124.7) is pressed again, the comparison values for speed range 1 are accepted by SFB 30.
Status Bits in the User Program	If the upper or lower limit of the speed range is exceeded, the corresponding status bit of SFB 30 is enabled.
	Speed range 1:
	• When status bit STATUS_U (upper limit exceeded) is enabled, red lamp 1 is actuated with output 124.0.
	• When status bit STATUS_L (lower limit exceeded) is enabled, yellow lamp 1 is enabled with output 124.1.
	Speed range 2:
	• When status bit STATUS_U (upper limit exceeded) is enabled, red lamp 2 is actuated with output 124.2.
	• When status bit STATUS_L (lower limit exceeded) is enabled, yellow lamp 2 is enabled with output 124.3.
	As long as no valid frequency is available, the signal state of the status bits is 0.

Output Parameter FREQ	The output parameter FREQ outputs the actual measured frequency. You can evaluate the frequency in the user program. Because of the four light slots, you must divide the frequency by four to obtain the actual frequency and thus the speed of the shaft (implemented in the following user program).
Instance DB of SFB 30	In the example, the data are stored in instance DB 62.
User Program	In the following section you will find the user program for the example. The program was created with the <i>Statement List Editor in STEP 7</i> .

Global Data Used Table 3-19 shows the global data used in the user program.

Global Data	Meaning
MD 8	Current measured frequency
MD 20	Actual shaft speed in 1/min
MD 12	Current comparison value upper limit
MD 16	Current comparison value lower limit
M 24.0	Enable SFB 30 execution
M 24.1	Store BR bit (= output parameter ENO of SFB 30)
M 99.0	Auxiliary memory bit
M 99.1	Edge memory bit
M 100.0 = 1	Speed range 1
M 100.0 = 0	Speed range 2
M 100.1	STATUS_U
M 100.2	STATUS_L
Q 124.0	Actuate red lamp 1
Q 124.1	Actuate red lamp 2
Q 124.2	Actuate yellow lamp 1
Q 124.3	Actuate yellow lamp 2
I 124.7	Pushbutton for switchover of speed range

Table 3-19Global Data for Example 2

OB 1 Statement	You enter the following STL user program in the statement section of OB 1:
Section	

STL (OB 100)	Explanation
Network 1	
CALL SFB 30 , DB62	
PRES_U_LIMIT:=	
PRES_L_LIMIT:=	
SET_U_LIMIT :=FALSE	SET_U_LIMIT = 0, to generate pos. edge
	at 2nd call of SFB 30
SET_L_LIMIT :=FALSE	<pre>SET_L_LIMIT = 0, to generate pos. edge at 2nd call of SFB 30</pre>
FREQ :=	
U_LIMIT :=	
L_LIMIT :=	
STATUS_U :=	
STATUS_L :=	
CALL SFB 30 , DB62	
PRES_U_LIMIT:=L#72000	Specify comparison values for speed
PRES_L_LIMIT:=L#64000	range 1
SET_U_LIMIT :=TRUE	
SET_L_LIMIT :=TRUE	
FREQ :=	
U_LIMIT :=	
L_LIMIT :=	
STATUS_U :=	
STATUS_L :=	
A BR	
= M 24.0	If no error has occurred, then SFB ena- ble for OB1
SET	
= M 100.0	Preset speed range 1

STL (O	в 1)	Explanation
Networ	k 1	
	A I 124.7	Edge generation for pushbutton input
	FP M 99.0	for changing speed range
	= M 99.1	
	A M 99.1	
	JBN JCN	
	AN M 100.0	Invert speed range marker
	= M 100.0	if positive edge at I 124.7 (M 100.0 = 1 \Rightarrow
JCN:	A M 100.0	speed range 1)
	JC DZB1	If speed range 1, then jump to DZB1.
	L L#101000	Specify comparison value PRES_U_LIMIT for
	T DB62.DBD 0	speed range 2 direct in the instance DB.
	L L#98000	Specify comparison value PRES_L_LIMIT for
	T DB62.DBD 4	speed range 2 direct in the instance DB.
	JU wei	
DZB1:	L L#72000	Specify comparison value PRES_U_LIMIT for
	T DB62.DBD 0	speed range 1 direct in the instance DB.
	L L#64000	Specify comparison value PRES_L_LIMIT for
	T DB62.DBD 4	speed range 1 direct in the instance DB.
wei:	NOP 0	
	A M 24.0	Enable from OB 100
	JBNB M001	
	CALL SFB 30 , DB 62	
	PRES_U_LIMIT:=	
	PRES_L_LIMIT:=	
	SET_U_LIMIT :=E124.7	Transfer of comparison value specifications if
	SET_L_LIMIT :=E124.7	momentary-contact switch I 124.7 has been pressed
	FREQ :=MD8	Current frequency
	U_LIMIT :=MD12	Current comparison value U_LIMIT
	L_LIMIT :=MD16	Current comparison value L_LIMIT
	STATUS_U :=M100.1	Indicator: Upper limit exceeded
	STATUS L :=M100.2	Indicator: Lower limit exceeded

OB 1 Statement You enter the following STL user program in the statement section of OB 1: **Section**

STL (O	в 1, с	ontin	ued)	Explanation
	_			
M001:		BR		
	=	м	24.1	Indicates whether SFB call correctly executed
	А	м	100.0	If speed range 1
	А	м	100.1	and upper limit exceeded,
	=	Q	124.0	then red lamp 1 on
	A	м	100.0	If speed range 1
	A	м	100.2	and lower limit exceeded,
	=	Q	124.1	then yellow lamp 1 on
	AN	м	100.0	If speed range 2
	А	м	100.1	and upper limit exceeded,
	=	Q	124.2	then red lamp 2 on
	AN	м	100.0	If speed range 2
	А	м	100.2	and lower limit exceeded,
	=	Q	124.3	then yellow lamp 2 on
	L	MD	8	End if valid speed value not yet read
	L	⊾#-1	1	
	==D			
	BEC			
	L	MD	8	Convert indicated frequency to current speed
	L	4000	D	
	/D			
	L	60		
	*D			Indicate speed [1/min.]
	т	MD	20	ι J

4

Counter Integrated Function

Integrated Inputs/Outputs

Table 4-1 lists the special integrated inputs/outputs of the CPU 312 IFM and CPU 314 IFM for the Counter integrated function.

Table 4-1	Overview: Integrated Inputs/Outputs for Counter Integrated Function on
	CPU 312 IFM and CPU 314 IFM

CPU 312 IFM	CPU 314 IFM	Function	
I 124.6	I 126.0	Digital input up	
I 124.7	I 126.1	Digital input down	
I 125.0	I 126.2	Digital input direction	
I 125.1	I 126.3	Digital input hardware start/stop	
Q 124.0	Q 124.0	Digital output A	
Q 124.1	Q 124.1	Digital output B	

Note

The CPU 312 IFM is used for examples in this chapter. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated input/outputs (see Table 4-1).

Section	Contents	Page
4.1	Function Overview	4-2
4.2	How the Counter Operates	4-3
4.3	Function of a Comparator	4-5
4.4	Assigning Parameters	4-8
4.5	Wiring	4-10
4.6	System Function Block 29	4-16
4.7	Structure of the Instance DB	4-19
4.8	Evaluation of Process Interrupts	4-20
4.9	Calculating the Cycle Time and Response Times	4-22
4.10	Example Applications	4-24

In this Chapter

4.1 Function Overview

IntroductionIn this section, you will find an overview diagram (block diagram) for the
Counter integrated function. The block diagram contains the main compo-
nents of the integrated function and all its inputs and outputs.Sections 4.2 and 4.3 refer to the block diagram. These sections describe the
interaction of the main components of the Counter integrated function and
their inputs and outputs.Purpose of the In-
tegrated FunctionThe Counter integrated function enables the measurement of counting pulses
up to a frequency of 10 kHz. The Counter integrated function can count up
and down.

Block Diagram Figure 4-1 shows the block diagram for the Counter integrated function.

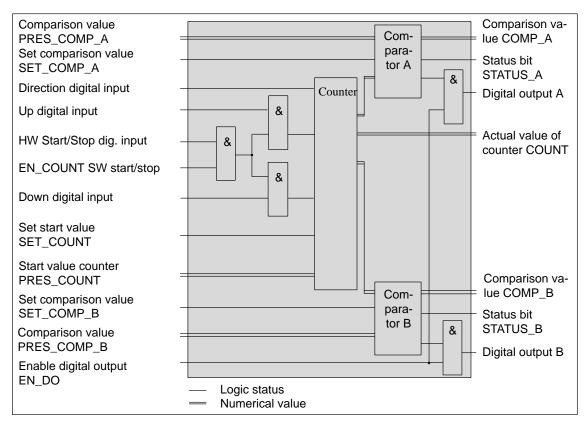


Figure 4-1 Block Diagram for Counter Integrated Function

4.2 How the Counter Operates

Counter	The counter calculates the actual value of the counter from the counting pulses (up and down).	
	The counting pulses are measured via two digital inputs on the CPU: Up digi- tal input and Down digital input.	
	You use <i>STEP 7</i> to configure whether the digital inputs are evaluated and, if so, whether positive or negative edges are evaluated.	
Actual Value of the Counter	The counter calculates the actual value according to the following formula: Actual value = no. of edges on Up DI – no. of edges on Down DI	
Function of the Counter	Figure 4-2 shows an example to illustrate how the actual value of the counter is changed by the counting pulses at the two digital inputs. The positive edges are evaluated on the Up digital input and the negative edges are evaluated on the Down digital input.	

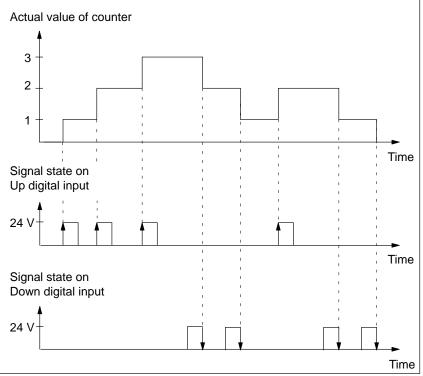
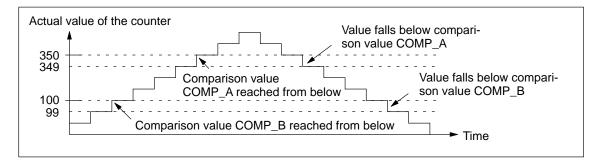
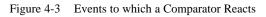


Figure 4-2 Counting Pulses and Actual Value of the Counter


Start/Stop Counter	You can start or stop the Counter integrated function in one of the following ways:		
	• From the integrated inputs/outputs: HW_Start/Stop digital input		
	• From the user program: input parameter EN_COUNT at SFB 29		
	The digital input and the input parameter are ANDed. This means that the Up and Down digital inputs are only evaluated when both are enabled.		
Define Start Value for Counter	You can define the start value at which the counter begins counting with in- put parameter PRES_COUNT at SFB 29. The start value is accepted by the counter:		
	• On a positive edge on input parameter SET_COUNT of SFB 29		
	• On the occurrence of a counter event, for example, comparison value of the counter reached from below (parameterized with <i>STEP 7</i>).		
Change Counting Direction	You can change the counting direction of the Up and Down digital inputs with the Direction digital input. While the signal status of the Direction digi- tal input is 0, the Up digital input counts down and the Down digital input counts up.		
Frequency Limit Exceeded	The Counter integrated function counts pulses up to a frequency of 10 kHz.		
\wedge	Warning		
\angle !	If the current frequency exceeds the frequency limit of 10 kHz:		
	Correct operation of the integrated function is no longer assured		
	• The cycle load is increased		


- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog responds, the CPU switches to STOP.

4.3 Function of a Comparator

Comparator	The Counter integrated function has two integrated comparators. A compara- tor compares the actual value of the counter with a defined comparison value and triggers a reaction on the occurrence of a configured event.		
Response of the Comparator to Events	You can configure events for any comparator. Events to which comparator A reacts:		
Events	• The actual value of the counter reaches the comparison value from below, that is the actual value changes from COMP_A-1 (COMP_A minus 1) to COMP_A.		
	• The actual value of the counter falls below the comparison value, that is the actual value changes from COMP_A to COMP_A-1.		
	Events to which comparator B reacts:		
	Comparator B reacts to the same events as comparator A. The only difference is that another comparison value (COMP_B) is assigned to comparator B.		
Example	Figure 4-3 shows an example of all possible events to which the comparators can react. The following values are defined:		
	• Comparison value COMP_A = 350		
	• Comparison value COMP_B = 100		
	If the actual value of the counter changes from 349 to 350 or from 350 to 349 due to a counting pulse, a reaction is triggered by comparator A.		
	If the actual value of the counter changes from 99 to 100 or from 100 to 99 due to a counting pulse, a reaction is triggered by comparator B.		

Configurable Reactions	The following reactions can be triggered when the actual value reaches or falls below the comparison value:		
	• Set/reset digital output A or B		
	Trigger a process interrupt		
	• Reset the counter		
	• Set comparator A or B		
	You configure the reactions with STEP 7.		
	You will find an overview of the possible parameters and their value ranges in Section 4.4.		
Configure Digital Outputs	You can configure the following properties for digital outputs A and B with <i>STEP</i> 7:		
	• On: the digital output is set		
	• Off: the digital output is reset		
	• Unaffected: the state of the digital output remains the same		
Enable Digital Out- puts	Input parameter EN_DO at SFB 29 is used to enable the digital outputs for the integrated function. Following the enable, the reactions of comparators A and B are transmitted directly to the automation process via the integrated inputs/outputs.		
	If input parameter EN_DO is continuously set to "0", you can use the digital outputs as standard digital outputs.		
Behavior of the Status Bits	Status bit STATUS_A or STATUS_B is set at SFB 29 if:		
Status Dits	The actual value of the counter COUNT \geq comparison value COMP_A (B)		
	You can evaluate the status bits in your user program.		

Example In Figure 4-4 you can see the reactions of digital output A and status bit STA-TUS_A when the actual value reaches and falls below comparison value COMP_A. The following parameters were assigned with *STEP 7*:

- Comparison value reached from below: Digital output A = on
- Value falls below comparison value: Digital output A = unchanged

You can reset the outputs used by the integrated function from the user program, for example, in order to reset digital output A.

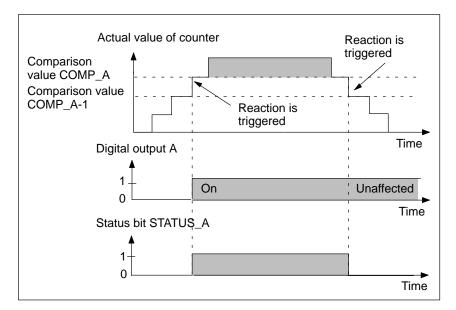


Figure 4-4 Example: Trigger Reactions

Define New Com-
parison ValuesYou can define new comparison values with input parametersPRES_COMP_A and PRES_COMP_B at SFB 29.

The new comparison values are accepted by the comparator:

- On a positive edge on the input parameters SET_COMP_A or SET_COMP_B at SFB 29
- On a counter event¹ with parameterized response.

¹ Counter event means the actual value of the counter reaches or exits a comparison value and the relevant response has been parameterized with *STEP* 7.

4.4 Assigning Parameters

Parameter	You assign the parameters for the integrated function with STEP 7. How to
Assignment with STEP 7	work with STEP 7 is described in the manual <i>Standard Software for S7 and M7, STEP 7</i> .

Parameters and
their Value RangesTable 4-2 lists the parameters for the Counter integrated function.

Parameter	Description	Value Range	Default Setting
Counter input: Up	You can set positive or negative edge evaluation on the Up digital input. If you select "deactivated", no counting pulses are evaluated. You can then use the associated digital input as a standard digital input.	Deactivated Positive edge Negative edge	Positive edge
Counter input: Down	You can set positive or negative edge evaluation on the Down digital input. If you select "deactivated", no counting pulses are evaluated. You can then use the associated digital input as a standard digital input.		Positive edge
Number of the instance DB	The instance DB contains the data exchanged between the inte- grated function and the user program.	1 to 63 CPU 314 IFM: 1 to 127	63
Automatic upda- ting at the cycle control point ¹	You determine whether the instance DBs of the integrated func- tion are to be updated at the cycle control point.	Activated/ deactivated	Activated
Comparison valu	e reached from below (from COMP_A-1 to COMP_A)		
Digital output A	You can set the reaction of digital output A when the actual value reaches the comparison value from below.	Unaffected On Off	Unaffected
Process interrupt	You can specify that a process interrupt is to be triggered when the actual value reaches the comparison value from below.	Activated/ Deactivated	Deactivated
Reset counter	You can specify that the counter is reset when the actual value reaches the comparison value from below.	Activated/ Deactivated	Deactivated
Set comparator A	You can specify that comparator A is set when the actual value reaches the comparison value from below.	Activated/ Deactivated	Deactivated

 Table 4-2
 "Integrated Inputs/Outputs" Parameter Block

¹ Parameter can only be set in CPU 314 IFM. In the CPU 312 IFM, the parameter is automatically activated

Parameter	Description	Value Range	Default Setting
Value falls below	comparison value (from COMP_A to COMP_A-1)		-
Digital output A	You can specify the reaction of digital output A when the actual value falls below the comparison value.	Unaffected On Off	Unaffected
Process interrupt	You can specify that a process interrupt is triggered when the actual value falls below the comparison value.	Activated/ Deactivated	Deactivated
Reset counter	You can specify that the counter is reset when the actual value falls below the comparison value.	Activated/ Deactivated	Deactivated
Set comparator A	You can specify that comparator A is set when the actual value falls below the comparison value.	Activated/ Deactivated	Deactivated
1	e reached from below (from COMP_B-1 to COMP_B) alue from COMP_A-1 to COMP_A)		
	comparison value (from COMP_B to COMP_B-1) alue from COMP_A to COMP_A-1)		

 Table 4-2
 "Integrated Inputs/Outputs" Parameter Block, Continued

4.5 Wiring

In this Section

Section	Contents	Page
4.5.1	Connecting Sensors to the Integrated Inputs/Outputs	4-11
4.5.2	Connecting Actuators to the Integrated Inputs/Outputs	4-14

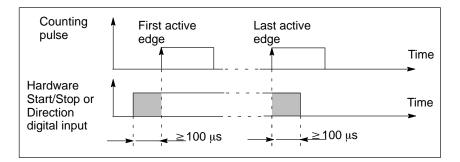
4.5.1 **Connecting Sensors to the Integrated Inputs/Outputs**

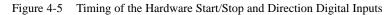
Introduction	The CPU 312 IFM is used as a wiring example. The example can be imple- mented in the same way with the CPU 314 IFM using other integrated inputs/ outputs (see Table 4-1).		
Function of the	The sensors are conn	ected to the Up and Down digital inputs.	
Digital Inputs	The Counter integrated function can be started and stopped via the Hardware Start/Stop digital input.		
	The up/down countin Direction digital inpu	g direction on the digital inputs can be changed with the it.	
Hardware Start/ Stop Digital Input	The Hardware Start/S EN_COUNT of SFB	Stop digital input is ANDed with input parameter 29 (see Section 4.6).	
	If you do not connect any switch to the Hardware Start/Stop digital input, you must supply a permanent voltage of 24 V to the digital input. Only then are the counting pulses evaluated on the Up/Down digital inputs. You start/ stop the counter with input parameter EN_COUNT of SFB 29.		
Change Counting Direction		ltage of 24 V to the Direction digital input, the counting Down digital inputs is reversed.	
	Precondition: signal states of Hardware Start/Stop digital input and input parameter EN_COUNT of SFB 29 are 1.		
	Table 4-3 illustrates the function of the Direction digital input.		
	Table 4-3Function of the Direction Digital Input		
	Direction Digital Input	Counting Direction	
	24 V applied	Up digital input counts up and	
		Down digital input counts down	

٠

•

and

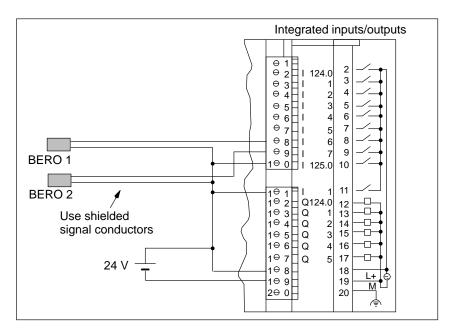

Up digital input counts down

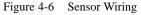

Down digital input counts up

24 V not applied

Time LimitsWhen you set and reset the Hardware Start/Stop or Direction digital inputs,
you must observe the following time limits:

- Before the first active edge of the counting pulse: time $\geq 100 \ \mu s$
- After the last active edge of the counting pulse: time $\geq 100 \ \mu s$


Terminals The terminals of the integrated inputs/outputs on the CPU 312 IFM for the Counter integrated function are listed in Table 4-4.


Table 4-4	Terminals for the Sensors

Terminal	Identifier	Description
8	I 124.6	Up
9	I 124.7	Down
10	I 125.0	Direction
11	I 125.1	Hardware Start/Stop
18	L+	Supply voltage
19	М	Ground

Terminal Connection Model

Figure 4-6 illustrates the connection of the sensors (for example, BERO proximity switches 1 and 2) to the integrated inputs/outputs.

Shielding

You must use shielded signal conductors to connect the sensors and you must connect the conductor shields to ground. Use the shield connecting element for this purpose.

You will find more detailed information on the installation of the conductor shield in the manual *S7-300 Programmable Controller, Installation and Hardware.*

4.5.2 Connecting Actuators to the Integrated Inputs/Outputs

Introduction	The CPU 312 IFM is used as a wiring example. The example can be imple- mented in the same way with the CPU 314 IFM using other integrated inputs/ outputs (see Table 4-1).
Function of the Digital Outputs	Digital outputs A and B are available for connecting actuators to the inte- grated inputs/outputs.
Enable Digital Outputs	Before digital outputs A and B can perform their function, they must be enabled for the Counter integrated function. This is achieved by calling SFB 29 (input parameter $EN_DO = 1$) in the user program (see Section 4.6).
	Following the enable, the reactions of comparators A and B are transmitted directly to the automation process via the integrated inputs/outputs.
	If input parameter EN_DO is not enabled (EN_DO = 0), the Counter integrated function has no effect on digital outputs A and B. You can use digital outputs A and B as standard digital outputs.
Terminals	Table 4-5 shows the relevant terminals.
	Table 4-5Terminals for the Actuators

Terminal	Identifier	Description
12	Q 124.0	Digital output A
13	Q 124.1	Digital output B
18	L+	Supply voltage
19	М	Ground

Figure 4-7 shows an example for wiring digital outputs A and B.

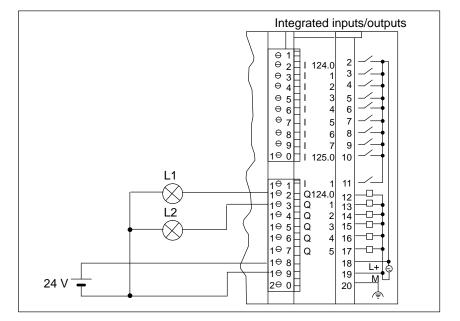


Figure 4-7 Actuator Wiring

4.6 System Function Block 29

Introduction

The Counter integrated function is assigned to SFB 29. A graphical illustration of SFB 29 is shown in Figure 4-8.

	SFB 2	29
	 EN	ENO
	 PRES_COUNT	COUNT
	 PRES_COMP_A	COMP_A
	 PRES_COMP_B	COMP_B
	 EN_COUNT	STATUS_A
	 EN_DO	STATUS_B
Edge-controlled	 SET_COUNT	
Edge-controlled	 SET_COMP_A	
Edge-controlled	 SET_COMP_B	

Figure 4-8 Graphical Illustration of SFB 29

Input Parameters In Table 4-6 you will find a description of the input parameters of SFB 29. **of SFB 29**

Table 4-6	Input Parameters of SFB 29
-----------	----------------------------

Input Parameter	Description		
EN	EN is the input parameter for enabling SFB 29. This input parameter causes the SFB to be executed. The input parameter has no effect on the execution of the integrated function. The SFB is executed as long as $EN = 1$. When $EN = 0$, the SFB is not executed.		
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)
PRES_COUNT	You can use this input parameter to store a new start value for the counter. It is accepted follow- ing a positive edge on the SET_COUNT input parameter or on a counting event ¹ .		
	Data type: DINT	Address ID: I, Q, M, L, D	Value range: from -2147483648 to 2147483647
PRES_COMP_A			new COMP_A comparison value. It is accepted fol- SET_COMP_A or on a counting event ¹ .
	Data type: DINT	Address ID: I, Q, M, L, D	Value range: from -2147483648 to 2147483647
PRES_COMP_B			new COMP_B comparison value. It is accepted fol- SET_COMP_B or on a counting event ¹ .
	Data type: DINT	Address ID: I, Q, M, L, D	Value range: from -2147483648 to 2147483647
EN_COUNT	You activate the counter with input parameter EN_COUNT. With this parameter you enable counter from the user program. Input parameter EN_COUNT is ANDed with the Hardware Start/Stop digital input. That means that the Up and Down digital inputs are only evaluated the integrated function when both of the input parameters are enabled.		neter EN_COUNT is ANDed with the Hardware e Up and Down digital inputs are only evaluated by
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)
EN_DO	When EN_DO = 1	, the digital outputs are	enabled for the Counter integrated function.
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)
SET_COUNT	Following a positi	ve edge on this input par	ameter, the start value PRES_COUNT is accepted.
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)
SET_COMP_A	Following a positive edge on this input parameter, comparison value PRES_COMP_A is a cepted.		ameter, comparison value PRES_COMP_A is ac-
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)
SET_COMP_B	Following a positive cepted.	ve edge on this input par	ameter, comparison value PRES_COMP_B is ac-
	Data type: BOOL	Address ID: I, Q, M, L, D	Value range: 0/1 (FALSE/TRUE)

Counting event means that the actual value of the counter reaches or falls below a comparison value and the corresponding reaction is configured with *STEP* 7.

Output Parameters In Table 4-7 you will find a description of the output parameters of SFB 29. **of SFB 29**

Table 4-7Output Parameters of	SFB 29
-------------------------------	--------

Output Parameter	Description	
ENO	Output parameter ENO indicates whether an error occurred during execution of SFB 29. If ENO = 1, no error occurred. If ENO = 0, SFB 29 was not executed or an error occurred durin execution.	
	Data type:Address ID: I, Q, M,Value range: 0/1 (FALSE/TRUE)BOOLL, D	
COUNT	The actual value of the counter is output in this parameter. When the value range is exceeded, the following apply:	
	• Upper limit exceeded: the counting process continues with the minimum value in the value range.	
	• Lower limit exceeded: the counting process continues with the maximum value in the value range.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
COMP_A	The current COMP_A comparison value is output in this output parameter.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
COMP_B	The current COMP_B comparison value is output in this output parameter.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
STATUS_A	The output parameter STATUS_A indicates the position of the actual value relative to comparison value COMP_A:	
	 Actual value COUNT ≥ comparison value COMP_A: output parameter STATUS_A enabled 	
	• Actual value COUNT < comparison value COMP_A: output parameter STATUS_A not enabled	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	
STATUS_B	The output parameter STATUS_B indicates the position of the actual value relative to comparison value COMP_B:	
	 Actual value COUNT ≥ comparison value COMP_B: output parameter STATUS_B enabled 	
	• Actual value COUNT < comparison value COMP_B: output parameter STATUS_B not enabled	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	

4.7 Structure of the Instance DB

Instance DB	Table 4-8 shows you the structure and the assignment of the instance DB for
of SFB 29	the Counter integrated function.

Address	Symbol	Meaning
DBD 0	PRES_COUNT	Start value of counter
DBD 4	PRES_COMP_A	Comparison value COMP_A (new)
DBD 8	PRES_COMP_B	Comparison value COMP_B (new)
DBX 12.0	EN_COUNT	Software start/stop
DBX 12.1	EN_DO	Enable digital outputs
DBX 12.2	SET_COUNT	Set counter
DBX 12.3	SET_COMP_A	Set comparison value COMP_A
DBX 12.4	SET_COMP_B	Set comparison value COMP_B
DBD 14	COUNT	Actual value of counter
DBD 18	COMP_A	Comparison value COMP_A (current)
DBD 22	COMP_B	Comparison value COMP_B (current)
DBX 26.0	STATUS_A	Status bit A
DBX 26.1	STATUS_B	Status bit B

Table 4-8 Instance DB of SFB 29

Length of the Instance DB

The data for the Counter integrated function are 28 bytes in length and begin at address 0 in the instance DB.

4.8 Evaluation of Process Interrupts

Introduction	The Counter integrated function triggers process interrupts on the occurrence
	of certain events.

Configurable	The events which can result in a process interrupt are listed in Table 4-9 to-
Events	gether with the parameters you must assign in STEP 7.

Process Interrupt on	Description	Configuration	
Actual value from COMP_A-1 to COMP_A	A process interrupt is triggered when the actual value reaches comparison value COMP_A from below.	Comparison value A reached from below: process interrupt ac- tivated	
Actual value from COMP_A to COMP_A-1	A process interrupt is triggered when the actual value falls below comparison value COMP_A.	Actual value below comparison value A: process interrupt acti- vated	
Actual value from COMP_B-1 to COMP_B	A process interrupt is triggered when the actual value reaches comparison value COMP_B from below.	Comparison value B reached from below: process interrupt ac- tivated	
Actual value from COMP_B to COMP_B-1	A process interrupt is triggered when the actual value falls below comparison value COMP_B.	Actual value below comparison value B: process interrupt acti- vated	

Table 4-9Events which can Cause a Process Interrupt

Process	When a process interrupt occurs, the process interrupt OB (OB 40) is called
Interrupt OB	up. The event which has invoked OB 40 is stored in the start information (de-
	claration section) of the OB 40.

Start Information	Table 4-10 shows the relevant temporary (TEMP) variables of OB 40 for the
of OB 40 for Inte-	Counter Integrated Function of the CPU 312 IFM/314 IFM. You will find a
grated Function	description of OB 40 in the System and Standard Functions Reference
	Manual.

 Table 4-10
 Start Information of OB 40 for Counter Integrated Function

Variable	Data Type	Description	
OB40_MDL_ADDR	WORD	B#16#7C	Display in local data word 6:
			• Address of module which triggered interrupt (in this case the CPU)
OB40_POINT_ADDR	DWORD	see Figure 4-9 Display in local data double word 8:	
			Integrated function which triggered interrupt
			• Event which triggered interrupt

Display of the Event which Triggered the Interrupt

From the variable OB40_POINT_ADDR you can read which Integrated Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8.

Please note: If interrupts from different inputs occur at very short time intervals (< 100 μ s), several bits can be enabled at the same time. In other words, several interrupts may cause only one OB 40 start.

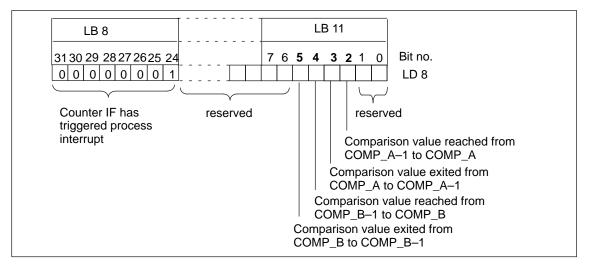


Figure 4-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter IF)?

Evaluation in User Program

The evaluation of process interrupts in the user program is described in the Programming Manual *System Software for S7-300/400, Program Design.*

4.9 Calculating the Cycle Time and Response Times

Introduction	The calculation of the cycle time for the CPUs is described in detail in the manual <i>S7-300 Programmable Controller, Installation and Hardware.</i> The following paragraphs describe the times which must be included in the calculation when the Counter integrated function is running.	
Calculation	You can calculate the cycle time with the following formula:	
	Cycle time = $t_1 + t_2 + t_3 + t_4$	
	$t_1 = Process image transfer time (process output image and process input image)^1$	
	t_2 = Operating system runtime including load generated by an executing integrated function ¹	
	t_3 = User program execution time ² including the SFB runtime when an SFB call is made in the program cycle ³	
	t_4 = Updating time of the instance DB at the cycle control point (if updating parameterized with <i>STEP 7</i>).	
Runtime of SFB 29	The runtime of SFB 29 is typically 300 µs.	
Instance DB Updating Time	The updating time of the instance DB at the cycle control point is 150 μ s for the Counter integrated function.	
Increased Cycle Time	 Please note that the cycle time can be increased due to: Time-controlled execution Interrupt handling Diagnostics and error handling 	

- ¹ Please refer to the manual *S7-300 Programmable Controller, Installation and Hardware* for the time required for the CPU 312 IFM.
- ² You have to determine the user program execution time, because it depends on your user program.
- ³ If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

Response Time	The response time is the time that elapses from the occurrence of an event at the input to the triggering of a reaction at the output of the programmable controller.
Reactions to Events	Events generated at the inputs by the Counter integrated function can trigger the following:
	• Reactions on the integrated inputs/outputs of the CPU
	• Reactions of SFB 29

Response Paths Figure 4-10 illustrates the various response paths.

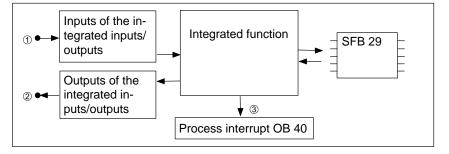


Figure 4-10 Response Paths

Response Times

Each response path results in a different response time. You will find the maximum response times for the Counter integrated function in Table 4-11.

 Table 4-11
 Response Times of the Counter Integrated Function

Response Path	In Fig. 4-10	Response Time
Integrated inputs/outputs → Integrated inputs/outputs	①→②	< 1 ms
Integrated inputs/outputs \rightarrow Process interrupt	①→③	< 1 ms

4.10 Example Applications

This Section This section contains 3 application examples of the Counter integrated function which build on each other.

Note

The CPU 312 IFM is used for the application examples. The examples can be implemented in the same way using the CPU 314 IFM provided you take account of the other integrated inputs/outputs (see Table 4-1).

In this Section

Section	Contents	Page
4.10.1	Regular Counting with Comparison Value	4-25
4.10.2	Differential Counting	4-31
4.10.3	Periodic Counting	4-40

4.10.1 Regular Counting with Comparison Value

TaskIn a bottling plant, the filled bottles are transported along conveyor belts for
packaging in empty crates.

A buffer store is provided for the bottles to ensure that a sufficient number bottles is always available. The buffer store has a limited capacity. If the number of bottles in the buffer store reaches the upper limit of 250, the motor of conveyor 1 is switched off.

An operator can also stop the counting process by activating a normallyclosed switch, if a fault occurs or conveyor 1 starts running.

Please note: the example does not include a routine for emptying the buffer store.

Wiring The technology and wiring of the regular counting process are shown in Figure 4-11.

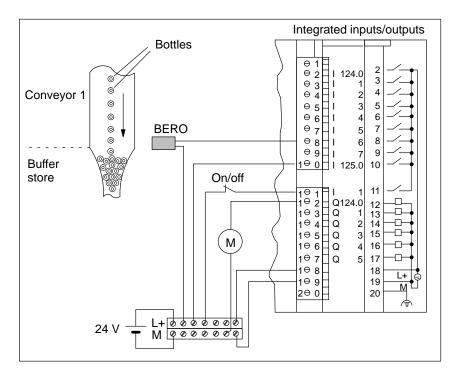


Figure 4-11 Regular Counting with Comparison Value

Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-12.

Terminal	Input/ Out- put	Function in Example
8	I 124.6	The positive edges are counted upwards. 1 bottle which travels past the BERO proximity switch and into the buffer store triggers 1 positive edge at input 124.6.
10	I 125.0	The Direction digital input is supplied with 24 V, that is the Up digital input counts up and the Down digital input counts down.
11	I 125.1	The counting process can be interrupted by activating the normally-closed switch (at the Hardware Start/Stop digital input).
12	Q 124.0 (Digital out- put A)	The output is reset when comparison value COMP_A is reached from below. When the number of bottles in the buffer store = 250, conveyor 1 is switched off.
18	L+	24 VDC supply voltage
19	М	Reference potential of supply voltage

Table 4-12Wiring of the Inputs and Outputs (1)

Sequence Diagram The sequence diagram in Figure 4-12 illustrates the relationship between the filling of the buffer store, the interruption of the counting process and the shut-down of the motor.

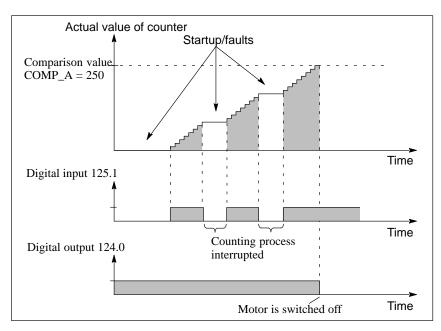


Figure 4-12 Sequence Diagram for Example 1

Parameter Assignment with STEP 7

You assign the parameters for the CPU as follows with the STEP 7 tool *S7 Configuration*:

Table 4-13Parameters for Example 1

Parameter	Input	Description
Counter input: Up	Positive edge	I 124.6 is activated for counting, positive edges are counted
Counter input: Down	Deactivated	I 124.7 is not used for integrated function
Number of instance DB	63	Instance DB for the example (default value)
Automatic upda- ting at the cycle control point ¹	Activated	The instance DB is updated at each cycle con- trol point.
Comparison value reached from below (from COMP_A-1 to COMP_A)		
Digital output A	Off	When the actual value reaches comparison va- lue COMP_A, the motor is switched off
Process interrupt	Deactivated	Process interrupt not triggered

Parameter	Input	Description
Reset counter	Deactivated	Counter is not reset to new start value
Set comparator A Deactivated		New comparison value is not defined

Table 4-13Parameters for Example 1, continued

¹ Only necessary in CPU 314 IFM

Cyclic Calling of SFB 29

SFB 29 is called cyclically in OB 1. The comparison value 250 and the counter start value 0 are passed to SFB 29.

SFB 29 is illustrated in Figure 4-13.

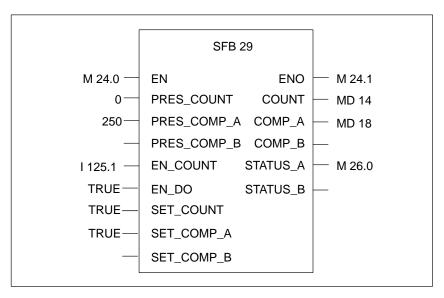


Figure 4-13 Initialization of SFB 29 on Start-Up (1)

Response at Output	As soon as 250 bottles have collected in the buffer store, conveyor 1 is shut down via output 124.0 (digital output A).	
Status Bit in User Program	Conveyor 1 is switched on again when status bit A is no longer enabled, that is if there are fewer than 250 bottles in the buffer store.	
Instance DB of SFB 29	In the example, the data are stored in instance DB 63.	
User Program	The following listing shows the user program for the example. It was created with the <i>Statement List Editor</i> in <i>STEP</i> 7.	

Global Data Used

Table 4-14 shows the global data used in the user program.

Global Data	Meaning	
MD 14	Actual value of counter	
MD 18	Current comparison value A	
M 24.0	Enable execution of SFB 29	
M 24.1	Store BR bit (= output parameter ENO of SFB 29)	
M 26.0	Status bit A	
I 125.1	Interrupt counting process	
Q 124.0	Actuate motor for conveyor 1	

Table 4-14Global Data for Example 1

Statement Section	You enter the following STL user program in the statement section of
OB 100	OB 100:

STL (OB 100)		Explanation	
Network 1			
CALL	SFB 29, DB 63	Call of SFB 29 with instance DB	
PRES_COUNT:	=		
PRES_COMP_A:	=		
PRES_COMP_B:	=		
EN_COUNT:	=		
EN_DO:	=		
SET_COUNT:	= FALSE	<pre>SET_COUNT = 0, to generate pos. edge in OB 1.</pre>	
SET_COMP_A:	= FALSE	<pre>SET_COMP_A = 0, to generate pos. edge in OB 1.</pre>	
SET_COMP_B:	=		
COUNT:	=		
COMP_A:	=		
COMP_B:	=		
STATUS_A:	=		
STATUS_B:	=		
A	BR	Scan BR bit (= ENO at SFB 29) to enable	
=	м 24.0	SFB 29 in OB 1	

OB 1 Statement	You enter the following STL user program in the statement section of OB 1:
Section	

STL (O	0B 1)		Explanation
Networ	k 1		
	•		Individual user program
	•		
	•		
	A	м 24.0	If M 24.0 = 1, i.e. EN = 1 at SFB 29, SFB is executed;
	JNB	m01	If RLO = 0, jump to m01
	CALL	SFB 29, DB 63	Call SFB 29 with instance DB
	PRES_COUNT:	= L#O	Define start value PRES_COUNT
	PRES_COMP_A:	= L#250	Define comparison value PRES_COMP_A
	PRES_COMP_B:	=	
	EN_COUNT:	= I 125.1	The counting process can be interrupted by activating the normally-closed switch
	EN_DO:	= TRUE	Digital outputs are enabled for Counte integrated function
	SET_COUNT:	= TRUE	Start value PRES_COUNT is passed
	SET_COMP_A:	= TRUE	Comparison value PRES_COMP_A is passed
	SET_COMP_B:	=	Assignment of output parameters
	COUNT:	= MD 14	
	COMP_A:	= MD 18	
	COMP_B:	=	
	STATUS_A:	= M 26.0	
	STATUS_B:	=	
01:	А	BR	Query BR bit (= ENO at SFB 29) for
	=	M 24.1	error evaluation
	AN	м 26.0	If status bit A not set, conveyor
	S	Q 124.0	belt 1 runs, Q 124.0 is reset by IF if comparison value COMP_A reached from below.

4.10.2 Differential Counting

Introduction	The following example is an extension of the example in Section 4.10.1.
Extension of the Task	If the number of bottles in the buffer store falls below 50, a red lamp lights up.
Wiring	The technology and wiring of the differential counting process are shown in Figure 4-14.

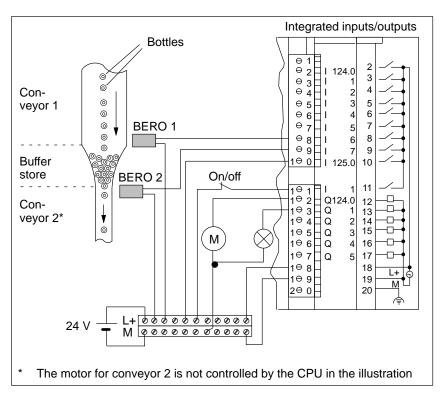


Figure 4-14 Differential Counting

Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-15.

Terminal	Input/ Out- put	Function in Example
8	I 124.6	The positive edges are counted upwards. 1 bottle which travels past BERO proximity switch 1 and into the buffer store triggers 1 positive edge at input 124.6.
9	I 124.7	The positive edges are counted downwards. 1 bottle which travels past BERO proximity switch 2, that is out of the buffer store on to conveyor 2, triggers 1 positive edge at input 124.7.
10	I 125.0	The Direction digital input is supplied with 24 V, that is the Up digital input counts up and the Down digital in- put counts down.
11	I 125.1	The counting process can be interrupted by activating the normally-closed switch (at the Hardware Start/Stop digital input).
12	Q 124.0 (Digital out- put A)	The output is reset when comparison value COMP_A is reached from below. When the number of bottles in the buffer store = 250, conveyor 1 is switched off. The output is set when the value falls below comparison value COMP_A (conveyor 1 is running).
13	Q 124.1 (Digital out- put B)	The output is set when the value falls below comparison value COMP_B. When the number of bottles in the buffer store falls be- low 50, the red lamp lights up. The output is reset when comparison value COMP_B is reached from below (red lamp does not light up).
18	L+	24 VDC supply voltage
19	М	Reference potential of supply voltage

Table 4-15Wiring of the Inputs and Outputs (2)

Sequence Diagram The sequence diagram in Figure 4-15 illustrates the relationship between the number of bottles in the buffer store falling below 50 and indication by the red lamp. Conveyor 1 continues to run until the upper limit of 250 bottles has been reached in the buffer store.

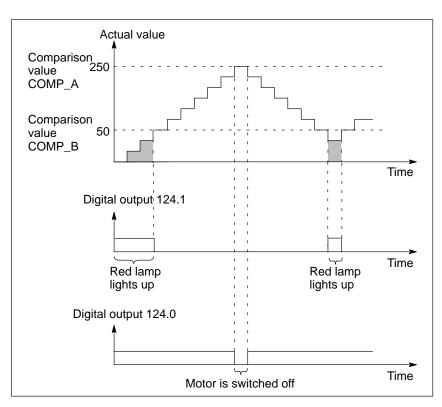


Figure 4-15 Sequence Diagram for Example 2

Parameter Assignment with STEP 7

You assign the parameters for the CPU as follows with STEP 7:

Table 4-16Parameters for Example 2

Parameter	Input	Description	
Counter input: Up	Positive edge	I 124.6 is activated for counting, positive edges are counted	
Counter input: Down	Positive edge	I 124.7 is activated for counting, positive edges are counted	
Number of instance DB	63	Instance DB for the example (default value)	
Automatic upda- ting at the cycle control point ¹	Activated	The instance DB is updated at each cycle con- trol point	
Comparison valu	e reached from bel	ow (from COMP_A-1 to COMP_A)	
Digital output A	Off	When the actual value reaches comparison va- lue COMP_A, the motor is switched off	
Process interrupt	Deactivated	Process interrupt is not triggered	
Reset counter	Deactivated	Counter is not reset	
Set comparator A	Deactivated	New comparison value is not specified	
Value falls below	comparison value	(from COMP_A to COMP_A-1)	
Digital output A	On	If the actual value falls below comparison value COMP_A, the motor is switched on.	
Process interrupt	Deactivated	Process interrupt is not triggered	
Reset counter	Deactivated	Counter is not reset	
Set comparator A	Deactivated	New comparison value is not specified	
Comparison valu	Comparison value reached from below (from COMP_B-1 to COMP_B)		
Digital output B	Off	If the actual value reaches comparison value COMP_B, the red lamp goes out	
Process interrupt	Deactivated	Process interrupt is not triggered	
Reset counter	Deactivated	Counter is not reset to new start value	
Set comparator B	Deactivated	New comparison value is not specified	

Parameter Input		Description	
Value falls below comparison value (from COMP_B to COMP_B-1)			
Digital output B	On	When the actual value falls below comparison value COMP_B, the red lamp lights up	
Process interrupt	Deactivated	Process interrupt is not triggered	
Reset counter	Deactivated	Counter is not reset to new start value	
Set comparator B	Deactivated	New comparison value is not specified	

 Table 4-16
 Parameters for Example 2, continued

¹ Only necessary in CPU 314 IFM

Initialization of SFB 29

Cyclic Calling of

SFB 29

SFB 29 is called on start-up from OB 100 and initialized. Comparison value 250, comparison value 50 and the start value of counter 0 are transferred to SFB 29 (MD 0, MD 4 and MD 8). Figure 4-16 shows SFB 29 with the initialized input parameters.

	SFB 29	
M 26.2 —	EN ENO	— M 26.3
MD 0 —	PRES_COUNT COUNT	— MD 14
MD 4 —	PRES_COMP_A COMP_A	— MD 18
MD 8 —	PRES_COMP_B COMP_B	— MD 22
FALSE —	EN_COUNT STATUS_A	— M 26.0
FALSE —	EN_DO STATUS_B	— M 26.1
FALSE —	SET_COUNT	
FALSE —	SET_COMP_A	
FALSE —	SET_COMP_B	

Figure 4-16 Initialization of SFB 29 on Start-Up (2)

SFB 29 is called cyclically in OB 1. The assignment of SFB 29 is illustrated in Figure 4-17.

	SFB 29	
M 26.2 —	EN ENO	— M 26.3
	PRES_COUNT COUNT	MD 14
	PRES_COMP_A COMP_A	— MD 18
	PRES_COMP_B COMP_B	— MD 22
l 125.1 —	EN_COUNT STATUS_A	м — M 26.0
TRUE —	EN_DO STATUS_E	
TRUE —	SET_COUNT	
TRUE —	SET_COMP_A	
TRUE —	SET_COMP_B	

Figure 4-17 Initialization of SFB 29 in the Cyclic Program (2)

As soon as the number of bottles in the buffer store falls below 50, the red lamp is actuated via output 124.1 (digital output B).

Response at Output

Instance DB of SFB 29	In the example, the data are stored in instance DB 63.
User Program	The following listing shows the user program for the example. It was created with the Statement List Editor in STEP 7.

Global Data Used Table 4-17 shows the global data used in the user program.

Global Data	Meaning	
MD 0	Start value of counter	
MD 4	Comparison value A (new)	
MD 8	Comparison value B (new)	
MD 14	Actual value of counter	
MD 18	Current comparison value A	
MD 22	Current comparison value B	
M 26.0	Statusbit A	
M 26.1	Statusbit B	
M 26.2	Enable execution of SFB 29	
M 26.3	Store BR bit (= output parameter ENO of SFB 29)	
I 125.1	Interrupt counting process	
Q 124.0	Actuate motor for conveyor 1	
Q 124.1	Actuate red lamp	

Table 4-17Global Data for Example 2

OB 100 Statement Section

You enter the following statement list (STL) user program in the statement section of OB 100:

STL (O	в 100)		Explanation
Networ	k 1		
	L	L#0	
	Т	MD 0	Define start value PRES_COUNT in MD 0
	L	L#250	Define new comparison value PRES_COMP_A
	т	MD 4	in MD 4
	L	L#50	Define new comparison value PRES_COMP_B
	Т	MD 8	in MD 8
	SET		Enable execution of SFB 29
	=	M 26.2	
	A	м 26.2	If M 26.2 = 1, i.e. EN = 1 at SFB 29, then SFB is executed;
	JNB	m01	If RLO = 0, jump to m01
	CALL	SFB 29, DB 63	Call SFB 29 with instance DB
	PRES_COUNT:	= MD 0	Assignment of input parameters
	PRES_COMP_A:	= MD 4	
	PRES_COMP_B:	= MD 8	
	EN_COUNT:	= FALSE	Counter not yet enabled
	EN_DO:	= FALSE	Digital outputs are not enabled for Counter integrated function
	SET_COUNT:	= FALSE	<pre>SET_COUNT = 0, to generate pos. edge in OB 1</pre>
	SET_COMP_A:	= FALSE	<pre>SET_COMP_A = 0, to generate pos. edge in OB 1</pre>
	SET_COMP_B:	= FALSE	<pre>SET_COMP_B = 0, to generate pos. edge in OB 1</pre>
	COUNT:	= MD 14	Assignment of output parameters
	COMP A:	= MD 18	
	COMP_B:	= MD 22	
	STATUS_A:	= M 26.0	
	STATUS_B:	= M 26.1	
m01:	А	BR	Query BR bit (= ENO at SFB 29) for er-
	=	M 26.3	ror evaluation
	AN	M 26.1	Fulfill start condition, i.e. red lamp
	=	Q 124.1	lights up
	AN	M 26.0	Conveyor belt on if comparison value
	=	Q 124.0	COMP_A not yet reached

Section			0	
STL (OB	1)			Explanation
Network	1			
	•			
	•			Individual user program
	•			
	A	M 26.3		If M 26.3 = 1, SFB is executed;
	JNB	m01		If RLO = 0, jump to m01

Call SFB 29 with instance DB

integrated function

transferred

ror evaluation

cally by IF.

ferred

The counting process can be interrupted by activating the normally-closed switch

Digital outputs are enabled for Counter

Start value PRES_COUNT is transferred

Comparison value PRES_COMP_B is trans-

Query BR bit (= ENO at SFB 29) for er-

Conveyor belt and lamps (Q 124.0 and Q 124.1) switched on and off automati-

Comparison value PRES_COMP_A is

Assignment of output parameters

SFB 29, DB 63

= E 125.1

= TRUE

= TRUE

= TRUE

= TRUE

= MD 14

= MD 18

= MD 22

=

BR

M 26.3

= M 26.0

=

=

=

CALL

PRES_COUNT:

PRES_COMP_A:

PRES_COMP_B:

EN_COUNT:

SET_COUNT:

SET_COMP_A:

SET_COMP_B:

COUNT:

COMP_A:

COMP_B:

А

=

m01:

STATUS_A:

STATUS_B:

EN_DO:

OB 1 Statement You enter the following STL user program in the statement section of OB 1: Section

Integrated Functions CPU 312 IFM/CPU 314 IFM
EWĂ 4NEB 710 6058-02a

4.10.3 Periodic Counting

Introduction	The following example is an extension of the examples in Sections 4.10.1 and 4.10.2. A second CPU 312 IFM is used for the implementation of the example.
Task	The bottles are transported from the buffer store in empty crates along conveyor 2.
	When the maximum capacity of a crate (= 6 bottles) has been reached, conveyor 2 is switched off, the slide is actuated and a time of approximately 5 s is started. During this time, the slide pushes the full crates onto conveyor 3.
	When the 5 s are over, the slide is returned to its starting position, conveyor 2 restarts and the counting process starts on a new crate.
	The operator can also stop the counting process by means of a normally- closed contact switch if a fault occurs or conveyor 2 starts up.
Technology Plan and Wiring	The technology and wiring of the periodic counting process are shown in Figure 4-18.

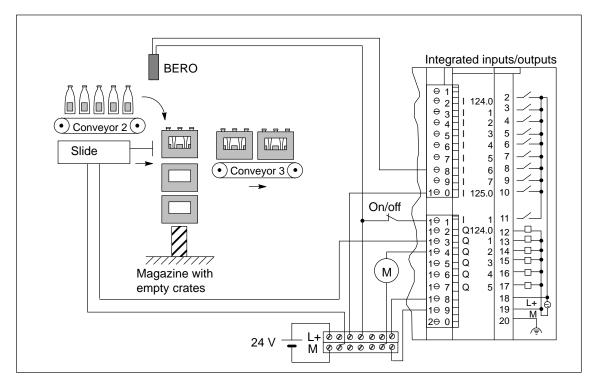


Figure 4-18 Periodic Counting

Function of Inputs and Outputs

The functions of the inputs and outputs for the example are listed in Table 4-18.

Terminal	Input/ Output	Function in Example
8	I 124.6	The positive edges are counted upwards. 1 bottle which travels past BERO proximity switch 1 and
		into the buffer store triggers 1 positive edge at input 124.6.
10	I 125.0	The Direction digital input is supplied with 24 V, that is the Up digital input counts up.
11	I 125.1	The counting process can be interrupted by activating the normally-closed switch (at the Hardware Start/Stop digital input).
13	Q 124.1 (Digital	The output is set by the integrated function when comparison value COMP_B is reached from below.
	output B)	When the maximum capacity of a crate (= 6 bottles) has been reached, a time of approximately 5 s is started during which conveyor 2 is not running and a slide is actuated in order to transport the full crate.
14	Q 124.2	This output is used to actuate the motor for conveyor 2.
18	L+	24 VDC supply voltage
19	М	Reference potential of supply voltage

Table 4-18Wiring of the Inputs and Outputs (3)

Sequence Diagram

The sequence diagram in Figure 4-19 illustrates the relationship between reaching the maximum capacity of 6 bottles and the movement of the slide during a defined period.

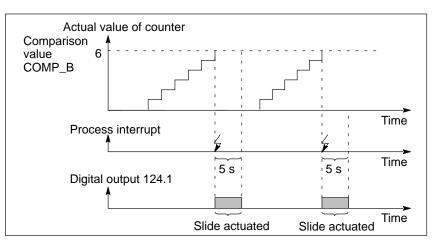


Figure 4-19 Sequence Diagram for Example 3

Parmeter Assignment with *STEP 7*

You assign the parameters for the CPU as follows with STEP 7:

rable 4-19 Parameters for Example 5	Table 4-19	Parameters for Example 3
-------------------------------------	------------	--------------------------

Parameter	Input	Description
Counter in- put: Up	Positive edge	I 124.6 is activated for counting, positive edges are counted
Counter in- put: Down	Deacti- vated	I 124.7 is not used for integrated function
Number of instance DB	63	Instance DB for the example (default value)
Automatic updating at the cycle control point ¹	Activated	The instance DB is updated at each cycle control point
Comparison v	alue reached	from below (from COMP_B-1 to COMP_B)
Digital out- put B	On	When the actual value reaches comparison value COMP_B, a time is started and the slide is actuated.
Process inter- rupt	Activated	Process interrupt is triggered, conveyor belt 2 is stopped and the time for the slide is started.
Reset counter	Activated	Counter is reset to new start value (= 0 bottles)
Set compara- tor A	Deactiva- ted	New comparison value is not specified

¹ Only necessary in CPU 314 IFM

Initialization of SFB 29

SFB 29 is called on start-up from OB 100 and initialized. Comparison value 6 and the starting value of counter 0 are transferred to SFB 29 (MD 0 and MD 8).

SFB 29 is illustrated in Figure 4-20 with the initialized input parameters.

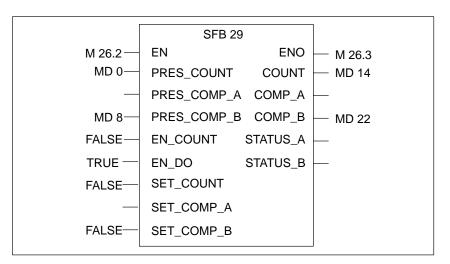


Figure 4-20 Initialization of SFB 29 on Start-Up (3)

Evaluation of the	The process inter	rupt starts OB 40. A time of 5 s is started in OB 40.
Process Interrupt		started, conveyor 2 is switched off in OB 1 and the slide is integrated function. When the time expires, conveyor 2 is n in OB 1.
Instance DB of SFB 29	In the example, t	he data are stored in instance DB 63.
User Program	The following listing shows the user program for the example. It was created with the <i>Statement List Editor</i> in <i>STEP 7</i> .	
Global Data Used	Table 4-20 shows	s the global data used in the user program.
	Table 4-20 Glo	obal Data for Example 3
	Global Data	Meaning
	MD 0	Start value of counter

Comparison value B (new)

Current comparison value B

Enable execution of SFB 29

Actual value of counter

MD 8

MD 14

MD 22

M 26.2

Table 4-20Global Data for Example 3	Table 4-20	Global Data for Example 3
-------------------------------------	------------	---------------------------

Global Data	Meaning	
M 26.3	Storage of BR bit (= output parameter ENO of SFB 29)	
T 0	Time for slide actuation	
I 125.1	Interrupt counting process	
Q 124.1	Actuate slide	
Q 124.2	Actuate motor for conveyor 2	

OB 100 Statement Section

You enter the following statement list (STL) user program in the statement section of OB 100:

Networ		- "	
	L	L#0	Define start value PRES_COUNT in MD 0
	Т	MD 0	
	L	L#6	Define new comparison value PRES_COMP_
	Т	MD 8	in MD 8
	SET		Enable execution of SFB 29
	=	М 26.2	
	A	м 26.2	If M 26.2 = 1, i.e. EN = 1 at SFB 29, then SFB is executed;
	JNB	m01	If RLO = 0, jump to m01
	CALL	SFB 29, DB 63	Call SFB 29 with instance DB
	PRES_COUNT:	= MD 0	Assignment of input parameters
	PRES_COMP_A:	=	
	PRES_COMP_B:	= MD 8	
	EN_COUNT:	= FALSE	Counter not yet enabled
	EN_DO:	= TRUE	Digital outputs are enabled for Counte integrated function
	SET_COUNT:	= FALSE	<pre>SET_COUNT = 0, to generate pos. edge in OB 1</pre>
	SET_COMP_A:	=	
	SET_COMP_B:	= FALSE	<pre>SET_COMP_B = 0, to generate pos. edge in OB 1</pre>
	COUNT:	= MD 14	Assignment of output parameters
	COMP_A:	=	
	COMP_B:	= MD 22	
	STATUS_A:	=	
	STATUS_B:	=	
n01:	А	BR	Query BR bit (= ENO at SFB 29) for
	=	M 26.3	error evaluation

-	в 1)		Explanation
Network	k 1		
	•		
	•		Individual user program
	•		
	SET		Motor for conveyor 2 is switched on
	S	A 124.2	
	A	M 26.2	If M 26.2 = 1, i.e. EN = 1 at SFB 29,
			then SFB is executed
	JNB	m01	If RLO = 0, jump to m01
	CALL	SFB 29, DB 63	Call SFB 29 with instance DB
	PRES_COUNT:	=	
	PRES_COMP_A:	=	
	PRES_COMP_B:	=	
	EN_COUNT:	= I 125.1	The counting process can be interrupted by activating the normally-closed switc
	EN_DO:	=	
	SET_COUNT:	= TRUE	Counter is set at first OB 1 pass
	SET_COMP_A:	=	
	SET_COMP_B:	= TRUE	Comparison value PRES_COMP_P is set at first OB 1 pass
	COUNT:	= MD 14	Assignment of output parameters
		= MD 14 =	Assignment of output parameters
	COMP_A:	= = MD 22	
	COMP_B:		
	STATUS_A:	=	
	STATUS_B:	=	
m01:	А	BR	Query BR bit (= ENO at SFB 29) for er-
	=	M 26.3	ror evaluation
	AN	тО	When the time of 5 s has expired, the
	R	A 124.1	slide is no longer actuated. As long as the time of 5 s is running,
	A	то	the motor for conveyor 2 is switched
	R	A 124.2	off and at the same time the slide is
	AN	т 0	triggered by the integrated function (
	FR	то	124.1)

OB 1 Statement	You enter the following STL user program in the statement section of OB 1:
Section	

OB 40 Statement	You enter the following statement list (STL) user program in the statement
Section	section of OB 40:

STL (OB 40)		Explanation
Network 1		
AN	то	
L	S5T#5S	Start timer T 0 for 5 s
sv	то	
I		

5

Counter A/B Integrated Function (CPU 314 IFM)

In this Chapter

Section	Contents	Page
5.1	Function Overview	5-2
5.2	How the Counter Operates	5-3
5.3	Function of a Comparator	5-5
5.4	Assigning Parameters	5-7
5.5	Wiring	5-9
5.6	System Function Block 38	5-13
5.7	Structure of the Instance DB	5-15
5.8	Evaluation of Process Interrupts	5-16
5.9	Calculating the Cycle Time and Response Times	5-18

Example Applications

Special applications of the Counter A/B integrated function will not be described in this chapter.

Example applications for the Counter integrated function can be found in Section 4.10 and following sections. You may use these applications as samples for the Counter A/B integrated function.

5.1 Function Overview

Introduction	In this section, you will find an overview diagram (block diagram) for the Counter A/B integrated function of the CPU 314 IFM. The block diagram contains the main components of the integrated function and all its input and output parameters.
	Sections 5.2 and 5.3 refer to the block diagram. These sections describe the interaction of the main components of the Counter integrated function and their inputs and outputs.
Purpose of the In- tegrated Function	The Counter A/B integrated function comprises counters A and B, which can count simultaneously and independently of one another. The principle of operation of both counters is identical.
	The Counter A/B integrated function enables the measurement of counting pulses up to a frequency of 10 kHz. The Counter A/B integrated function can count up and down.

Block Diagram Figure 5-1 shows the block diagram for the Counter A/B integrated function.

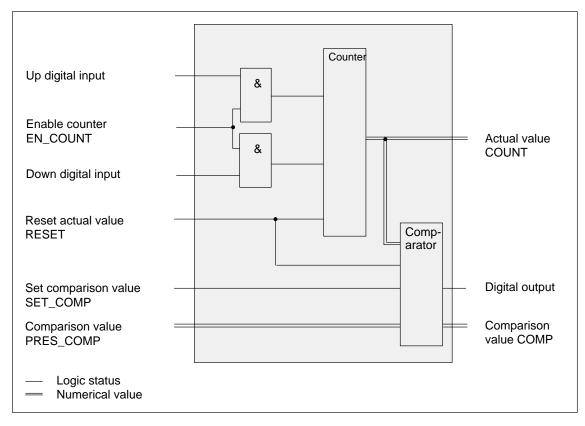


Figure 5-1 Block Diagram for Counter A/B Integrated Function

5.2 How the Counters Operate

Counter	The counter calculates the actual value of the counter from the counting pulses (up and down).
	The counting pulses are measured via two digital inputs on the CPU: Up digi- tal input and Down digital input. Only positive edges are evaluated on the digital inputs.
	Precondition: You have used <i>STEP 7</i> to configure the digital inputs Up and Down (see Section 5.4).
Actual Value of the Counter	The counter calculates the actual value according to the following formula: Actual value = no. of edges on Up DI - no. of edges on Down DI
Function of the Counter	Figure 5-2 shows an example to illustrate how the actual value of the counter is changed by the counting pulses at the two digital inputs.

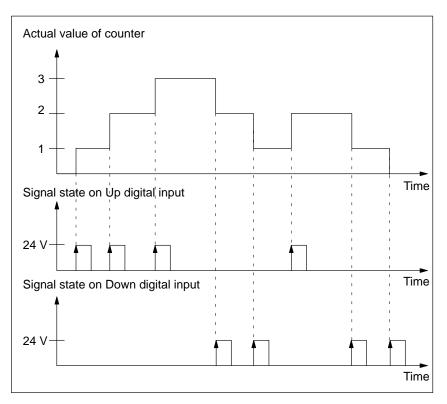


Figure 5-2 Counting Pulses and Actual Value of the Counter

Enable Counter	You can enable the Counter A/B integrated function via the user program by setting input parameter EN_COUNT of SFB 38 to the '1' state.
	All incoming counting pulses will be ignored as long as the EN_COUNT input parameter has signal state '0'.
Reset Counter via User Program	You can reset the counter to a reset value defined via <i>STEP 7</i> in the user program. For this purpose, you have to apply a '1' signal to input parameter RESET of SFB 38.
	As long as input parameter RESET has signal state 1, the actual value is reset, i.e. the parameterized reset value is output as the COUNT actual value. The digital output is then set to '0' and no longer controlled by the integrated function.
Reset Counter if Actual Value Reaches Comparison Value	The counter can be reset to a reset value parameterized via <i>STEP 7</i> . In <i>STEP 7</i> , you can parameterize the integrated function in such a way that it resets the counter if the actual value COUNT reaches the comparison value COMP from below or drops below that value.
Change Counting Direction	A signal change at the digital input for the counting direction causes the up/ down digital input to change the counting direction (up if "1" is applied; down if "0" is applied).
	Precondition: You have used <i>STEP 7</i> to configure the digital inputs Up and Down (see section 5.4).
Frequency Limit Exceeded	The Counter A/B integrated function counts pulses up to a frequency of 10 kHz.
\wedge	Warning
<u>/ •</u> \	If the current frequency exceeds the frequency limit of 10 kHz for several milliseconds:
	• Correct operation of the integrated function is no longer assured
	The cycle load is increased

- The process interrupt response time is increased
- Communication errors can arise (up to termination of the connection)

When the cycle time watchdog responds, the CPU switches to STOP.

5.3 Function of a Comparator

Comparator	The Counter A/B integrated function has two integrated comparators. A comparator compares the actual value of the counter with a defined comparison value and triggers a reaction on the occurrence of a configured event.
Response of the Comparator to Events	 You can configure the following events to which the comparator reacts: The actual value of the counter reaches the comparison value from below, that is the actual value changes from COMP-1 (COMP minus 1) to COMP. The actual value of the counter falls below the comparison value, that is the actual value changes from COMP to COMP-1.
Example	Figure 5-3 shows an example of all possible events to which the comparator can react.Defined: comparison value COMP = 100If the actual value of the counter changes from 99 to 100, a reaction is triggered. If the actual value of the counter changes from 100 to 99, a reaction is triggered.

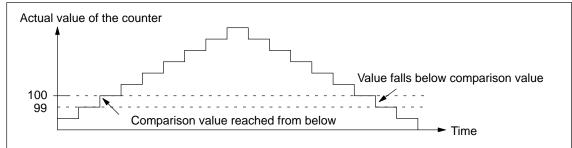


Figure 5-3 Events to which a Comparator Reacts

Configurable Reactions

The following reactions can be triggered when the actual value reaches or falls below the comparison value:

- Set/reset digital output
- Change previous state of the digital output
- Trigger a process interrupt
- Reset the counter
- Set the comparator

You configure the reactions with STEP 7. You will find an overview of the possible parameters and their value ranges in Section 5.4.

Configure Digital Output	You can configure the following properties for the digital output with <i>STEP 7</i> :	
	• On: the digital output is set	
	• Off: the digital output is reset	

- Change: The previous output state changes, i.e. the digital output is either set or reset.
- Unaffected: the state of the digital output remains the same

Example: Trigger In Figure 5-4 you can see the reactions of the digital output when the actual value reaches and falls below comparison value COMP. The following parameters were assigned with *STEP 7*:

- Comparison value reached from below: Digital output = on
- Value falls below comparison value: Digital output = unchanged

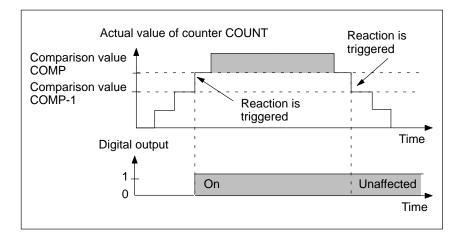


Figure 5-4 Example: Trigger Reactions

Define New Comparison ValuesYou can define new comparison values with the input parameterparison ValuesPRES_COMP.

The new comparison value is accepted by the comparator:

- On a positive edge on the input parameter SET_COMP.
- On a counter event¹ with parameterized response.

¹ Counter event means the actual value of the counter reaches or leaves a comparison value and the relevant response has been parameterized with *STEP 7*.

5.4 Assigning Parameters

Parameter	You assign the parameters for the integrated function with the integrated
Assignment with	function using the STEP 7 software. How to work with STEP 7 is described
STEP 7	in the manual Standard Software for S7 and M7, STEP 7.

Parameters and
their Value RangesTable 5-1 lists the parameters for the Counter A/B integrated function.

Table 5-1	Counter A/B Register
-----------	----------------------

Parameter	Description	Value Range	Default Setting
Counting signals	 You can parameterize digital inputs 126.0 and 126.1 for counter A and digital inputs 126.2 and 126.3 for counter B as follows: Digital input Up and digital input Down or Digital input Up/Down and digital input direction (Impulse und Richtung) A signal change at the Direction digital input causes the counting direction to change at the Up/down digital input (Up if "1" is present; down if "0" is present). 	Up and down Pulses and direction	Up and down
Reset value	 You define a reset value. The actual value of the counter is reset on the reset value if: If the input parameter RESET of SFB 38 has signal state 1 or If the actual value reaches the comparison value from below or falls below it (depending on parameter assignment) 	-2147483648 to 2147483647	0
Number of the instance DB	The instance DB contains the data exchanged between the integrated function and the user program.	1 to 127	Counter A: 60 Counter B: 61
Automatic up- dating at the cycle control point	You determine whether the instance DB of the integrated function is to be updated at the cycle control point.	Activated/ deactivated	Activated

Parameter	Description	Value Range	Default Setting
Actual value re	aches comparison value from below (COUNT from COMP	-1 to COMP)	
Digital output	You can set the reaction of digital output when the actual value reaches the comparison value from below. Change: The previous output state is changed, i.e. the digital output is either set or reset	Unaffected On Change Off	Unaffected
Process inter- rupt	You can specify that a process interrupt is to be triggered when the actual value reaches the comparison value from below.	Activated/ deactivated	Deactivated
Reset counter	You can specify that the counter is reset on the reset value when the actual value reaches the comparison value from below.	Activated/ deactivated	Deactivated
Set comparator	You can specify that comparator is set when the actual value reaches the comparison value from below.	Activated/ deactivated	Deactivated
Parameter	Description	Value Range	Default Setting
Actual value fa	lls below comparison value (COUNT from COMP to COM	P–1)	•
Digital output	You can specify the reaction of digital output when the actual value falls below the comparison value. Change: The previous output state is changed, i.e. the digital output is either set or reset	Unaffected On Change Off	Unaffected
Process inter- rupt	You can specify that a process interrupt is triggered when the actual value falls below the comparison value.	Activated/ deactivated	Deactivated
Reset counter	You can specify that the counter is reset on the reset value when the actual value falls below the comparison value.	Activated/ deactivated	Deactivated
Set comparator	You can specify that comparator is set when the actual value falls below the comparison value.	Activated/ deactivated	Deactivated

Table 5-1 Counter A/B Register, continued

5.5 Wiring

In this Section

Section	Contents	Page
5.5.1	Connecting Sensors to the Integrated Inputs/Outputs	5-10
5.5.2	Connecting Actuators to the Integrated Inputs/Outputs	5-12

5.5.1 Connecting Sensors to the Integrated Inputs/Outputs

Introduction Two digital inputs per counter are provided at the integrated inputs/outputs for the connection of sensors.

Time Limits When you set and reset the Direction digital input for counter A and/or B, you must observe the following limits:

- Before the first active edge of the counting pulse: Time $\ge 100 \ \mu s$
- After the first active edge of the counting pulse: Time $\geq 100 \ \mu s$

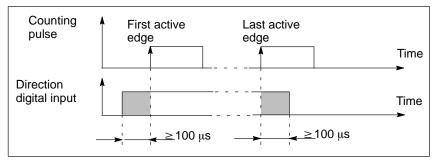


Figure 5-5 Timing of the Direction Digital Inputs for Counters A and B

Terminals

The terminals of the integrated inputs/outputs on the CPU 314 IFM for the Counter integrated function are listed in Table 5-2. The function of the digital inputs has been parameterized by means of *STEP* 7 (see Section 5.4).

Table 5-2 Ter	minals for	the Sensors
---------------	------------	-------------

Terminal	Identifier	Description
2 (special)	I 126.0	Counter A: Up (Up/Down)
3 (special)	I 126.1	Counter A: Down (Direction)
4 (special)	I 126.2	Counter B: Up (Up/Down)
5 (special)	I 126.3	Counter B: Down (Direction)
Connection of CPU power supply	L+	Supply voltage
Connection of CPU power supply	М	Ground

Terminal Connection Model

Figure 5-6 illustrates the connection of the sensors (for example, BERO) to the integrated inputs/outputs for counters A and B.

If you do not want to use only one counter -A or B – connect the sensors to inputs 126.0/126.1 for counter A or 126.2/126.3 for counter B.

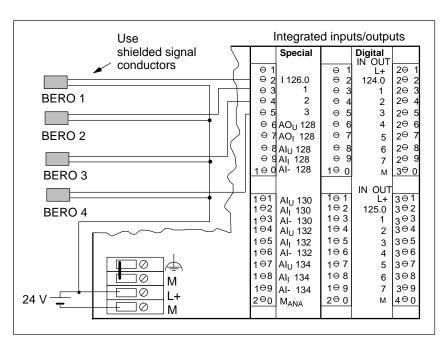


Figure 5-6 Sensor Connecting

Shielding

You must use shielded signal conductors to connect the sensors and you must connect the conductor shields to ground. Use the shield connecting element for this purpose.

You will find more detailed information on the installation of the conductor shield in the manual *S7-300 Programmable Controller, Installation and Hardware*.

5.5.2 Connecting Actuators to the Integrated Inputs/Outputs

Introduction 1 digital output per counter is available for connecting actuators to the integrated inputs/outputs.

Terminals Table 5-3 shows the relevant terminals.

Table 5-3Terminals for the Actuators

Terminal	Identifier	Description
21 (digital)	L+	Supply voltage
22 (digital)	Q 124.0	Digital output counter A
23 (digital)	Q 124.1	Digital output counter B
30 (digital)	М	Ground

Terminal Connection Diagram

Figure 5-7 shows an example of how actuators are connected to the digital outputs for counters A and B.

If you want to use only one counter – A or B – connect the actuators to output 124.0 for counter A or 124.1 for counter B.

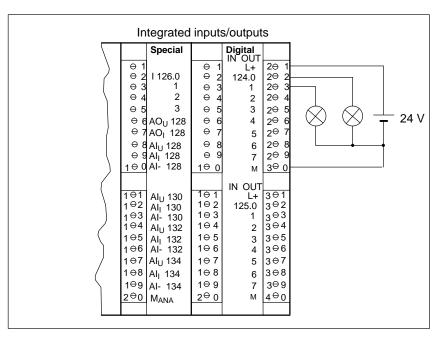


Figure 5-7 Actuator Connecting

5.6 System Function Block 38

Introduction

The Counter A/B integrated function comprises two counters – A and B – that count simultaneously and independent of one another. The principle of operation is the same for both counters. Each counter is assigned to a separate instance DB (see Section 5.7).

The Counter integrated function, i.e. both counters, is assigned to SFB 38. A graphical illustration of SFB 38 is shown in Figure 5-8.

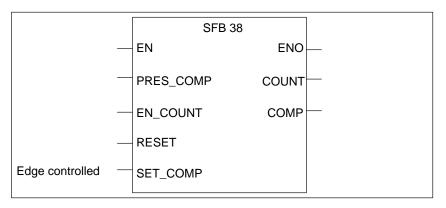


Figure 5-8 Graphical Illustration of SFB 38

Input Parameters In Table 5-4 you will find a description of the input parameters of SFB 38. of SFB 38

Table 5-4 Input Parameters of SFB 38

Input Parameter	Description	
EN	EN is the input parameter for enabling SFB 38. This input parameter causes the SFB to be executed. The input parameter has no effect on the execution of the integrated function. The SFB is executed as long as $EN = 1$. When $EN = 0$, the SFB is not executed.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	
PRES_COMP	You can use this input parameter to store a new PRES_COMP comparison value. It is accepted following a positive edge on input parameter SET_COMP or on a counting event ¹ .	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	
EN_COUNT	As long as a "0" signal is applied to input parameter EN_COUNT, all incoming counting pulses will be ignored.	
	As long as a "1" signal is applied to input parameter EN_COUNT, all incoming counting pulses will be evaluated.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	

Input Parameter	Description	
RESET	As long as a "0" signal is applied to input parameter RESET, the counter is ready for operation.	
	As long as a "1" signal is applied to input parameter RESET:	
	• The actual value will be reset, i.e. the parameterized reset value is output as the actual value COUNT.	
	• The digital output is set to signal state 0 and no longer influenced by the integrated function.	
	ta type: BOOL Address ID: I, Q, M, Value range 0/1 (FALSE/TRUE) L, D	
SET_COMP	Following a positive edge on this input parameter, comparison value PRES_COMP is accepted.	
	Data type: BOOL Address ID: I, Q, M, Value range 0/1 (FALSE/TRUE) L, D	

Table 5-4Input Parameters of SFB 38, continued

¹ Counting event means that the actual value of the counter reaches or falls below a comparison value and the corresponding reaction is configured with *STEP* 7.

Output Parameters In Table 5-5 you will find a description of the output parameters of SFB 38. **of SFB 38**

Output Parameter	Description	
ENO	Output parameter ENO indicates whether an error occurred during execution of SFB 38. If ENO = 1, no error occurred. If ENO = 0, SFB 38 was not executed or an error occurred during execution.	
	Data type: BOOL Address ID: I, Q, M, Value range: 0/1 (FALSE/TRUE) L, D	
COUNT	 The actual value of the counter is output in this parameter. When the value range is exceeded, the following applies: Upper limit exceeded: the counting process continues with the minimum value in the value range. Lower limit exceeded: the counting process continues with the maximum value in the value range. Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D 	
COMP	The current COMP comparison value is output in this output parameter.	
	Data type: DINT Address ID: I, Q, M, Value range: from -2147483648 to 2147483647 L, D	

5.7 Structure of the Instance DB

Introduction	Each counter of the Counter A/B integrated function is assigned one insta	
	DB:	

- for counter A: DB 60
- for counter B: DB 61

The two instance DBs have identical structures.

Instance DBTable 5-6 shows you the structure and the assignment of the instance DB forof SFB 38the Counter A/B integrated function.

Address	Symbol	Meaning
DBD 0	PRES_COMP	Comparison value (new)
DBX 4.0	EN_COUNT	Enable
DBX 4.1	RESET	Reset counter
DBX 4.2	SET_COMP	Set comparator
DBD 6	COUNT	Actual value of counter
DBD 10	COMP	Comparison value (current)

Table 5-6 Instance DB of SFB 38

Length of the Instance DB

The data for the Counter A/B integrated function are 14 bytes in length and begin at address 0 in the instance DB.

5.8 Evaluation of Process Interrupts

- Introduction The Counter A/B integrated function triggers process interrupts on the occurrence of certain events.
- ConfigurableThe events which can result in a process interrupt are listed in Table 5-7 to-Eventsgether with the parameters you must assign in STEP 7.

Process Interrupt on	Description	Configuration
Actual value from COMP-1 to COMP	A process interrupt is triggered when the actual value reaches com- parison value COMP from below.	Process interrupt activated
Actual value from COMP to COMP-1	A process interrupt is triggered when the actual value falls below comparison value COMP.	Process interrupt activated

 Table 5-7
 Events which can Cause a Process Interrupt

Process Interrupt OB	When a process interrupt occurs, the process interrupt OB (OB 40) is called up. The event which has invoked OB 40 is stored in the start information (de- claration section) of the OB 40.
Start Information of OB 40 for Inte- grated Function	Table 5-8 shows the relevant temporary (TEMP) variables of OB 40 for the Counter Integrated Function of the CPU 312 IFM/314 IFM. You will find a description of OB 40 in the <i>System and Standard Functions</i> Reference Manual.

Table 5-8	Start Information of OB 40 for Counter A/B Integrated Function
14010 0 0	Start Information of OB 10 for Counter 11 B Integrated I anetion

Variable	Data Type	Description	
OB40_MDL_ADDR	WORD	B#16#7C	Display in local data word 6:Address of module which triggered interrupt (in this case the CPU)
OB40_POINT_ADDR	DWORD	see Figure 5-9	Display in local data double word 8:Integrated function which triggered interruptEvent which triggered interrupt

Display of the Event which Triggered the Interrupt

From the variable OB40_POINT_ADDR you can read which Integrated Function triggered the interrupt and which event led to the triggering of the interrupt. The figure below shows the assignment to the bits of local data doubleword 8.

Please note: If interrupts from different inputs occur at very short time intervals (< 100 μ s), several bits can be enabled at the same time. In other words, several interrupts may cause only one OB 40 start.

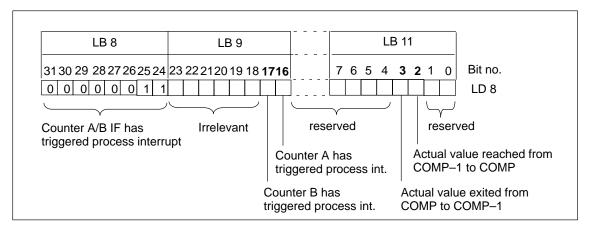
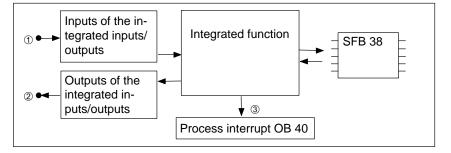


Figure 5-9 Start Information of OB 40: Which Event Triggered Interrupt (Counter A/B IF)?

Evaluation in User Program

The evaluation of process interrupts in the user program is described in the Programming Manual *System Software for S7-300/400, Program Design.*


5.9 Calculating the Cycle Time and Response Times

Introduction	The calculation of the cycle time for the CPU 314 IFM is described in detail in the manual <i>S7-300 Programmable Controller, Installation and Hardware.</i> The following paragraphs describe the times which must be included in the calculation when the Counter A/B integrated function is running.
Calculation	You can calculate the cycle time with the following formula:
	Cycle time = $t_1 + t_2 + t_3 + t_4$
	$t_1 = Process image transfer time (process output image and process input image)^1$
	$t_2 = Operating system runtime including load generated by an executing integrated function1$
	$t_3 = User program execution time^2$ including the SFB runtime when an SFB call is made in the program cycle ³
	t_4 = Updating time of the instance DB at the cycle control point (if updating parameterized with <i>STEP 7</i>).
Runtime of SFB 38	The runtime of the SFB is typically 230 µs.
Instance DB Updating Time	The updating time of the instance DB at the cycle control point is 100 μ s for the Counter A/B integrated function.
Increased Cycle Time	 Please note that the cycle time can be increased due to: Time-controlled execution Interrupt handling Diagnostics and error handling

- ¹ Please refer to the manual *S7-300 Programmable Controller, Installation and Hardware* for the time required for the CPU 314 IFM.
- ² You have to determine the user program execution time, because it depends on your user program.
- ³ If the SFB is called several times in a program cycle, you should multiply the runtime of the SFB by the number of calls.

Response Time	The response time is the time that elapses from the occurrence of an event at the input to the triggering of a reaction at the output of the programmable controller.
Reactions to Events	Events generated at the inputs by the Counter A/B integrated function can trigger the following:
	• Reactions on the integrated inputs/outputs of the CPU 314 IFM
	• Reactions of SFB 38

Response Paths Figure 5-10 illustrates the various response paths.

Figure 5-10 Response Paths

Response Times

Each response path results in a different response time. You will find the maximum response times for the Counter A/B integrated function in Table 5-9.

Table 5-9 Response Times of the Counter Integrated Function

Response Path	In Fig. 4-10	Response Time
Integrated inputs/outputs → Integrated inputs/outputs	$\textcircled{1} \rightarrow \textcircled{2}$	< 1 ms
Integrated inputs/outputs → Process interrupt	①→③	< 1 ms

Positioning Integrated Function (CPU 314 IFM)

Introduction	The Positioning integrated function of the CPU 314 IFM provides functions enabling open-loop positioning of axes in conjunction with a user program.			
Performance	The Position	ing integrated function does the following:		
Features	 Acquire signals from asymmetrical 24-V incremental encoders up to a frequency of 10 kHz 			
	• Acquire a 24-V signal on the traverse path for synchronizing the actual value (hardware synchronization)			
	• Enable synchronization via a control bit (software synchronization)			
Incorporating the Integrated Function	digital or The Position	a rapid traverse/creep speed drive or a frequency convertent atputs and an analog output of the integrated I/O using integrated function is incorporated into the user prog ontrol data and by evaluating the status messages to a sys- ck (SFB).	ram by	
In this Chapter	Section	Contents		
	Section		Page	
	61		Page	
	6.1 6.2	Introduction to the Positioning Integrated Function	6-2	
	6.1 6.2 6.3	Introduction to the Positioning Integrated Function Functional Principle of the Positioning Integrated Function	0	
	6.2	Introduction to the Positioning Integrated Function Functional Principle of the Positioning Integrated Function Parameter Assignment	6-2 6-15	
	6.2 6.3	Introduction to the Positioning Integrated Function Functional Principle of the Positioning Integrated Function	6-2 6-15 6-19	
	6.2 6.3 6.4	Introduction to the Positioning Integrated FunctionFunctional Principle of the Positioning Integrated FunctionParameter AssignmentControlling the Outputs via the Integrated functionEffect of the Distance Between the Start and Destination	6-2 6-15 6-19 6-20	
	6.2 6.3 6.4 6.5	Introduction to the Positioning Integrated Function Functional Principle of the Positioning Integrated Function Parameter Assignment Controlling the Outputs via the Integrated function Effect of the Distance Between the Start and Destination Position on Controlling the Outputs	6-2 6-15 6-19 6-20 6-22	

Calculating the Cycle Time

Application Examples

6.9

6.10

6-44

6-45

In this Section

6.1 Introduction to the Positioning Integrated Function

Content of this	In this section, you will learn the basics of reference point approach, jog
Section	mode and controlling drives, and you will find special information concern-
	ing the Positioning integrated function of the CPU 314 IFM.

Who Should Read
this Section?If you have little or no experience of open-loop positioning, we recommend
that you read this section.

Section	Contents	Page
6.1.1	Encoders and Power Sections for the Positioning Integrated Function	6-3
6.1.2	Reference Point Approach	6-5
6.1.3	Jog Mode	6-7
6.1.4	Controlling Rapid Traverse/Creep Speed Drives	6-9
6.1.5	Controlling the Drive via Frequency Converters	6-11

Pulse Evaluation You will find information on pulse evaluation via the Positioning integrated function in Appendix D.

6.1.1 Encoders and Power Sections for the Positioning Integrated Function

Encoder Classification In positioning, the path is acquired by an encoder. Encoders can be classified as follows:

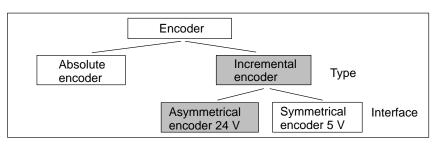


Figure 6-1 Encoder Classification

24-V Asymmetrical Encoders	Asymmetrical encoders are incremental encoders that generate two pulse trains A and B, phase-shifted by 90° , which are used for counting the path increments and for acquiring the direction.	
Encoders for the CPU 314 IFM	You can only connect one asymmetrical incremental encoder (24 V) to the Positioning integrated function of the CPU 314 IFM. We recommend you use a SIEMENS incremental encoder (see Appendix D).	
Signal Shapes	Figure 6-2 shows the shape of signals from 24-V asymmetrical encoders. You will find information on pulse evaluation via the Positioning integrated function in Appendix D.	
	Pulse train A 24 V	
	Pulse train B 24 V 1	
	Figure 6-2 Signal Shapes of Asymmetrical Incremental Encoders	
Zero Mark Signal of the Encoders	Most incremental encoders supply at each revolution a zero mark signal that can be used for synchronization. If you want to evaluate the zero mark signal, you will find details in Section 6.6.1 of how to connect it to the integral in-	

puts/outputs.

Classification According to Drive Control

In a positioning operation, the position is measured at moved parts. The movement is generated by a drive.

Application examples for positioning can be classified as follows according to drive control:

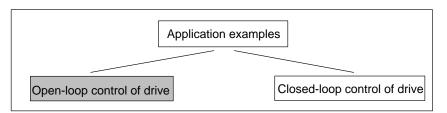


Figure 6-3 Classification According to Drive Control

Drives for the CPU 314 IFM	00	ted function of the CPU 314 IFM can perform open- al drives but not closed-loop control.
Power Section	Instead of controlling the drive direct, the CPU 314 IFM does so via a power section.	
Power Sections for the CPU 314 IFM	Table 6-1 lists the power sections that can be controlled by the Positioning integrated function.	
	Table 6-1Power Sections and Drives	
	Power Section	drives
	Contactor circuit	polarity-reversible asynchronous motor with veloc- ity specified in steps (rapid traverse/creep speed)

Frequency converter

asynchronous or synchronous motor with stepless

velocity specification

6.1.2 Reference Point Approach

Introduction An incremental encoder supplies a train of pulses. The position of the axis relative to a reference point can be calculated from this pulse train. A reference point approach is required in order to synchronize the actual position of the axis with the actual value of the integrated function.

We show below how a reference point approach is carried out using the Positioning integrated function.

Example Let's take as an example a worktable which is used to position workpieces.

One or more machining operations are performed at a machining point. In the example below, holes are drilled in a workpiece. The worktable is stopped at the relevant position until machining is completed.

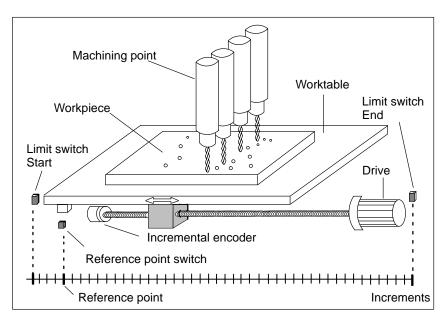


Figure 6-4 Worktable Example

Reference Point Switch

A reference point switch (for example, a BERO) is fitted at the reference point. When the reference point switch trips, the worktable has reached the reference point. The actual position of the axis is synchronized to the actual value of the integrated function.

Accuracy of the Reference Point

In practice, the reference point switch is implemented with a cam that is acquired with a switch, for example, a BERO.

The reference point switch supplies signal state 1 over a distance corresponding to the width of the cam.

In order to ensure a certain accuracy of the reference point,

- the reference point is assigned to the first counting pulse (increment) after the rising edge and
- the edge of the reference point switch is only evaluated if the reference point switch is reached from a specified direction.

Whether the reference point switch is to be evaluated from the forward or backward direction is parameterized with *STEP* 7.

Figure 6-5 shows the evaluation of the reference point switch when the forward direction has been parameterized with *STEP* 7.

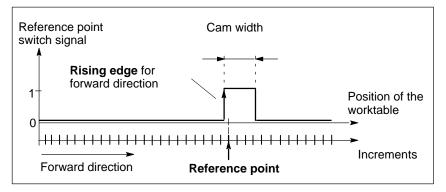


Figure 6-5 Evaluation of the Reference Point Switch

Repeat Accuracy There is no guarantee that the edges of the reference point switch will always occur at exactly the same position on the axis since switches such as BEROs have a limited repeat accuracy.

Typical values for the repeat accuracy:

•	Mechanical switches	10 µm
•	Forked light barriers	100 µm
•	BEROs	500 µm

The actual repeat accuracy depends strongly on the special switch. The repeat accuracy also depends on external factors such as the velocity at which the switch is reached. You will find detailed information in the Product Information on the switch.

6.1.3 Jog Mode

Jog Mode	Jog	mode means moving the axis 'manually' to any position.
	You (OP)	execute jog mode either via the user program or via an operator panel).
Using Jog Mode	You	use jog mode:
	1	If you want to move the axis 'manually' to a position
	2	For synchronizing the Positioning integrated function with the actual position of the axis
 Moving the Axis Manually 	tion.	orrect faults on the machine, the axis has to be moved to a specific posi- It must also be possible to do this even when the Positioning integrated tion is not synchronized.
② Synchronization of the Integrated Function	canr swit set. '	en the CPU 314 IFM is switched on, the Positioning integrated function not calculate the actual position of the axis because a reference point ch has not yet been reached and so the reference point has not yet been The Positioning integrated function is not synchronized with the axis and efore cannot control a positioning operation.
	To s	ynchronize, move the axis in jog mode over a reference point switch.
Synchronization Example	The ure ('Worktable positioning' example is considered again below (see Fig- 5-4).
		r switching on the system, the Positioning integrated function is synchro- d as follows:
		ardless of the actual position of the worktable, the user program controls worktable in jog mode until it reaches the start of the limit switch.
	forw the a	owing this, the user program controls the worktable in jog mode in the vard direction. The reference point switch is reached on the traverse and actual position of the worktable is synchronized to the actual value of the grated function.
Selecting Jog Mode	You	select jog mode via the user program.

Velocity in Jog
ModeYou specify the velocity with which jog mode is to execute via the user program. The velocity you can specify depends on the power section used.For the contactor circuit, you can move the axis in jog mode at rapid traverse or at creep speed.More velocities are possible for a frequency converter. The procedure for defining the velocity is given in Section 6.7 in Table 6-11.

6.1.4 Controlling Rapid Traverse/Creep Speed Drives

Controllable	The Positioning integrated function can control either:	
Drives	• A rapid traverse and creep speed drive or	
	A frequency converter	
Contactor Circuit	Contactor circuits are used for driving polarity-reversible asynchronous mo- tors.	
	Two different velocities can be implemented with polarity-reversible asynch- ronous motors - rapid traverse and creep speed.	
Velocity Profile	Figure 6-6 shows the velocity profile of a rapid traverse and creep speed drive. It applies both for a positioning operation as well as for jog mode.	
	The destination position is first approached at a higher velocity (rapid tra- verse). At a specified distance from the destination position, the system switches to a lower velocity (creep speed). Shortly before the axis reaches the destination position, also at a specified distance to the destination position, the drive is switched off.	
	Creep speed serves only to increase positioning accuracy and corresponds to the stopping distance.	
	You paramaterize the stopping distance with <i>STEP</i> 7. The switch-off difference is specified via the user program.	
	Velocity	
	Rapid traverse Creep speed	
	Changeover point from	
	rapid traverse to creep	

speed

Start position

Figure 6-6 Velocity Profile in the Case of Rapid Traverse and Creep Speed Drives

Special feature: If the distance between the start position and the destination position is less than or equal to the switch-off difference, the positioning operation is not executed.

Position

Destination position

Stopping Switch-off distance difference Switch-off point

Control via 4 Digital Outputs

The CPU 314 IFM has one digital output for switching the drive to rapid traverse and one for switching it to creep speed.

The direction of rotation of the drive is specified via 2 further digital outputs.

Figure 6-7 shows the behavior of the relevant digital outputs during a positioning operation.

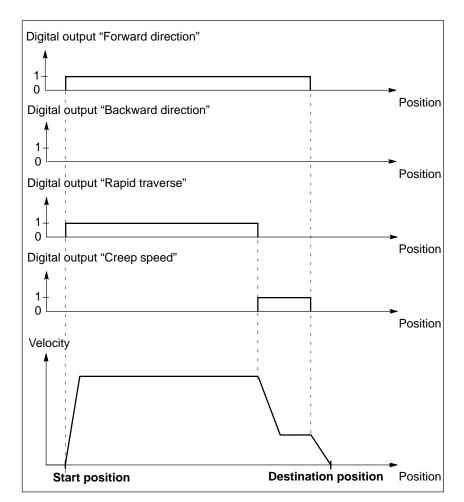


Figure 6-7 Positioning Operation in Forward Direction in the Case of Rapid Traverse and Creep Speed Drives

6.1.5 Controlling the Drive via Frequency Converters

Frequency Converters	Frequency converters are used for driving asynchronous motors or synchronous motors.
Determining the Velocity Profile	 The Positioning integrated function controls frequency converters with a velocity profile determined as follows: A maximum permissible velocity must not be exceeded. A maximum velocity must not be exceeded for mechanical reasons. A maximum permissible acceleration must not be exceeded. The acceleration forces working on a workpiece must not exceed a fixed maximum acceleration. The positioning operation should execute time-optimally under the abovenamed stipulations.
Velocity Profile	Figure 6-8 shows the velocity profile and acceleration profile of the drive within a positioning operation. This is an ideal representation and the drive is accelerated to maximum velocity/decelerated to standstill in 10 steps. The profiles apply both for a positioning operation and for jog mode. You specify the maximum velocity in the user program and you parameterize the acceleration and stopping distance with <i>STEP 7</i> .

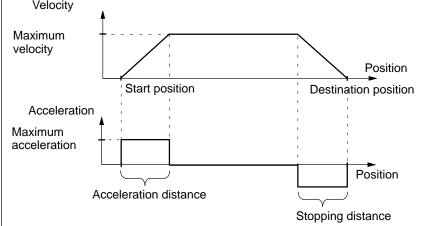


Figure 6-8 Velocity/Acceleration Profile in the Case of Frequency Converters

Switch-OffFigure 6-9 shows the velocity of the drive within a positioning operation. In
the inset, you can see the switch-off difference that you specify via the user
program.

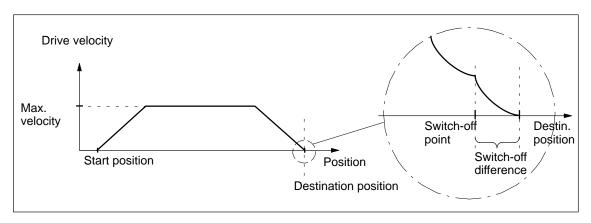
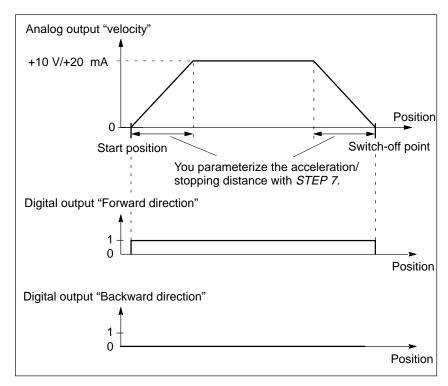



Figure 6-9 Switch-Off Difference when Controlling a Frequency Converter

Special Feature: If the distance between the start position and the destination position is \leq the switch-off difference, the positioning operation is not executed.

Controlling Frequency Converters	 Frequency converters are controlled either via: 1 analog output (signal 0 to 10 V or 0 to 20 mA) for specifying the velocity and 2 digital outputs for specifying the direction (forward, backward) or via 1 analog output (signal ± 10 V or ± 20 mA) for specifying the velocity and the direction (forward, backward)
Output of Analog Values	The analog values are output in steps (see Section 6.4).
Control via 1 Ana- log Output and 2 Digital Outputs	The velocity of a drive is specified to the frequency converter as an analog signal 0 to 10 V or 0 to 20 mA. The maximum specifiable velocity corresponds to 10 V or 20 mA. You determine the maximum velocity in the user program.
	It is up to you whether you use a voltage or a current value as the analog sig- nal.
	The direction of rotation of the drive is specified via 2 digital outputs.
	Figure 6-10 shows the analog values at the analog output and the behavior of the relevant digital outputs.

Control via 1 Analog Output

The velocity of the drive is specified to the frequency converter as an analog signal \pm 10 V or \pm 20 mA. The maximum specifiable velocity corresponds to +10 V or -10 V and +20 V or -20 V, respectively. You determine the maximum velocity in the user program.

It is up to you whether you use a voltage or a current value as the analog signal.

The direction of rotation of the drive is specified via the sign of the analog voltage/analog current.

Figure 6-11 shows the velocity at the analog output during a positioning operation.

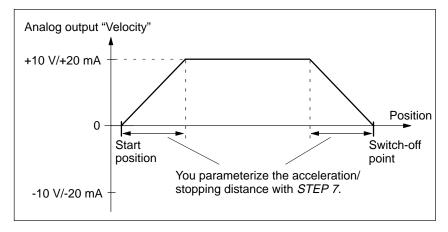


Figure 6-11 Positioning Operation in Forward Direction (1 Analog Output for Frequency Converters)

6.2 Functional Principle of the Positioning Integrated Function

Overview

Figure 6-12 gives an overview of the inputs and outputs of the Positioning integrated function and the way in which they work together with the user program CPU 314 IFM.

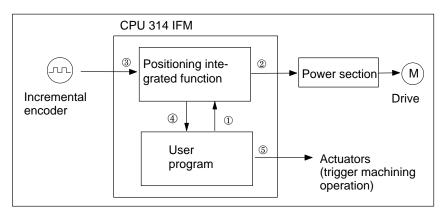


Figure 6-12 Inputs and Outputs of the Positioning Integrated Function

Positioning Operation Sequence

Table 6-2 explains Figure 6-12 using a positioning operation example.

Table 6-2 Positioning Operation Sequence

No.	Sequence Description
1	You start a positioning operation via the user program.
2	The Positioning integrated function starts the drive and controls the velocity of the drive until the switch-off point is reached.
3	The actual position is acquired so that the Positioning integrated function can control the drive.
4	The Positioning integrated function signals the completion of the positioning operation to the user program.
5	All further responses relevant to the machining of the positioned workpiece are initiated by the user program.

Inputs and Figure 6-13 shows the hardware and software inputs/outputs of the Positioning integrated function. The functions of the inputs and outputs are then explained. The structure of SFB 39 (software inputs/outputs) is explained in detail in Section 6.7.

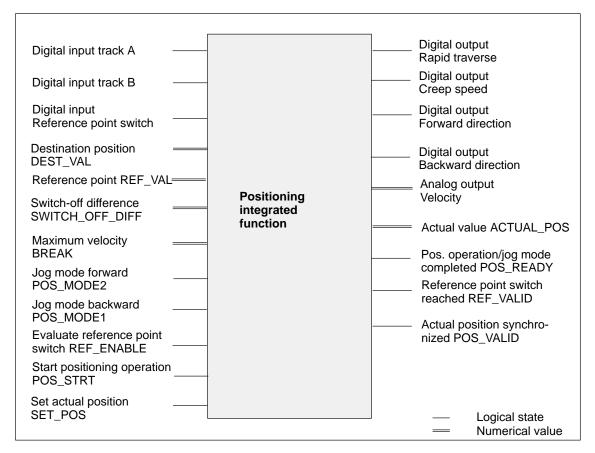


Figure 6-13 Inputs and Outputs of the Positioning Integrated Function

Overview of the	Table 6-3
Hardware Inputs/	IFM whi
Outputs	grated fu

Table 6-3 gives an overview of the integral inputs/outputs on the CPU 314 IFM which you can wire with sensors and actuators for the Positioning integrated function.

You parameterize the function of the hardware outputs with STEP 7 (see Section 6.3).

Table 6-3	Overview of the Function of the Hardware Inputs/Outputs
-----------	---

Input/Output on the CPU		Function when Controlling	
		Rapid Traverse/Creep Speed Drive	Frequency Converter
Digital input, track A	I 126.0	Connect incremental encode	ers for position encoding
Digital input, track B	I 126.1		
Digital input, reference point switch	I 126.2	Connect reference point swi nization	tch (e.g. BERO) for synchro-
Digital output, creep speed	Q 124.0	Output velocities for drive	-
Digital output, rapid tra- verse	Q 124.1		
Digital output, backward Digital output, forward	Q 124.2 Q 124.3	Output direction of rota- tion for drive	If frequency converter can only process positive analog signals, specify direction of rotation for drive
Analog output, velocity	PQW 128	_	If frequency converter can pro- cess signed analog signals, spec- ify direction of rotation for drive Specify velocity for drive

Overview of	Table 6-4 gives an overview of the software inputs and outputs of the inte-
Software Inputs/	grated function.
Outputs	The software inputs/outputs are available to you as parameters in SFB 39. You assign the parameters in your user program. You will find a detailed de- scription of the parameters in Section 6.7.

Table 6-4	Overview of the Function of the Software Inputs/Outputs
-----------	---

Input/Output Parameter in SFB 39	Function
DEST_VAL	Specify destination position of the axis
REF_VAL	Specify value for a new reference point
SWITCH_OFF_DIFF	Specify switch-off difference

Input/Output Parameter in SFB 39	Function
BREAK	Specify maximum velocity (max. analog value) with which positioning op- eration/jog mode is to be executed
POS_MODE2	Execute jog mode forward, abort jog mode/positioning operation
POS_MODE1	Execute jog mode backward, abort jog mode/positioning operation
REF_ENABLE	Reference point switch will be evaluated when next reached
POS_STRT	Start positioning operation
SET_POS	New reference point accepted as actual position
ACTUAL_POS	Output: Current actual value
POS_READY	Indicator: Positioning operation completed
REF_VALID	Indicator: Whether or not synchronization has taken place during the cur- rently executing positioning operation/jog mode
POS_VALID	Indicator: Integrated function is synchronized with axis

Table 6-4 Overview of the Function of the Software Inputs/Outputs, continue	ied
---	-----

Boundary frequency	The Positioning integrated function counts pulses up to a maximum fre- quency of 10 kHz.
Mechanical Instability	If counting pulses are initiated at tracks A and B due to mechanical instabil- ity, this can result in a loss of 1 increment in the worst case.
Exceeding the Boundary frequency	If pulse frequencies > 10 kHz occur for several milliseconds, please note the following warning:
\wedge	Warning
$\angle \cdot$	If the boundary frequency of 10 kHz is exceeded:
	Correct functioning of the integrated function cannot be guaranteed
	Cycle load increases
	Process interrupt response time increases

• Communication interference can result (including loss of connection).

If the cycle time monitor trips, the CPU goes to STOP.

6.3 Parameter Assignment

Parameter Assign-	You assign parameters to the integrated function with STEP 7. You will find a
ment Software	description of how to use STEP 7 in the User Manual Standard Software for
	S7 and M7, STEP 7.

Parameters and	Table 6-5 lists the parameters for the Positioning integrated function of the
their Value Ranges	CPU 314 IFM.

Table 6-5	"Positioning" Register
-----------	------------------------

Parameter	Explanation	Value Range	Default Setting
Drive control via	 The following are available for controlling the power section: 4 digital outputs 2 digital outputs and 1 analog output (0 to 10 V/0 to 20 mA) 1 analog output (±10 V/±20 mA) Select 4 digital outputs (DQs) for rapid traverse/creep speed drive. Choose between the 2 other alternatives if you want to control a frequency converter. Please note: To be able to process the output analog value in the CPU, direct the analog value to an analog input and read in this value. 	 4 digital outputs (DQs) 2 DQs + 1 AQ 1 analog output (AQ) 	4 digital out- puts (DQs)
Acceleration distance to maximum velocity (= stopping distance)	 You determine the distance during which: the analog value in the case of frequency converters is output to the maximum value or reduced to "0" traverse is executed in the case of contactor circuits at rapid traverse or creep speed 	0*; 48 to 65535 incre- ments	65535 incre- ments
Evaluation of reference point switch by direction	You can determine the direction from which the reference point switch must be reached in order to be evaluated.	Forward Backward	Forward
Number of the instance DB	The instance DB contains the data exchanged between the integrated function and the user program.	1 to 127	59
Automatic updating at the cycle control point	You determine whether the instance DB of the integrated function is to be updated at each cycle control point or not.	Activated/deactivated	Activated

* If you specify "0" in the case of rapid traverse/creep speed drives, the system switches to creep speed for 1 increment and thereafter the digital outputs "Creep speed" and "Direction forward/backward" are set to "0".

If you specify "0" in the case of frequency converters, the analog value will be increased by one step with each increment.

6.4 Controlling the Outputs via the Integrated Function

Controlling a Rapid Traverse/ Creep Speed Drive	You will find the velocity profile of the rapid traverse/creep speed drive and the control of the 4 digital outputs in Section 6.1.4.
Calculation of the Analog Value	Calculation of the analog value for control of the acceleration/stopping dis- tance via a frequency converter is explained below. You will find the com- plete velocity profile in Section 6.1.5.
Analog Value Output in Steps	Figure 6-14 shows the analog values after the start of two positioning opera- tions. In the enlarged view of the acceleration distances, you can see that the curves each consist of 10 steps of equal width and different height.
	The analog values are therefore output in steps from the CPU. You specify the width of the steps indirectly with the acceleration/stopping distance. The height of the steps is fixed by the integrated function.
	Please note the ratio of the step height to the step width and the associated traverse curve for your special application. The larger the acceleration/stop-

Please note the ratio of the step height to the step width and the associated traverse curve for your special application. The larger the acceleration/stopping distance you specify, the wider will be the steps.

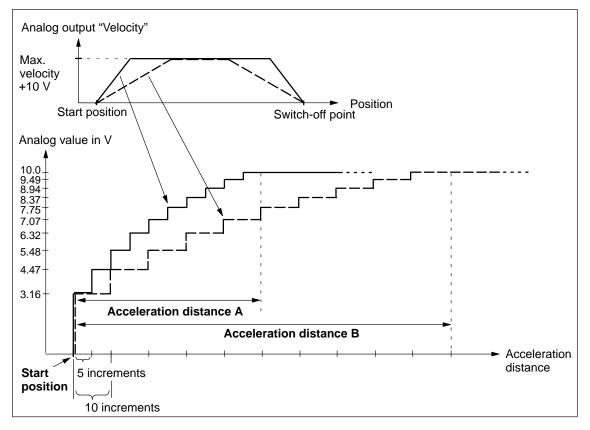


Figure 6-14 Analog Value Output in Steps, BREAK = 0

Stopping Distance	The analog values for the stopping distance are output in the same 10 steps as for the acceleration distance (see Figure 6-14). The switch-off point is reached at the end of the last step (= 3.16 V).		
Calculating the Step Width	The step width is calculated by the integrated function as follows:		
	Step width = $\frac{\text{Acceleration/stopping distance}}{10}$		
	Please note: The calculated step width is always rounded down so that the acceleration/stopping distance actually traversed is never greater than the parameterized acceleration/stopping distance.		
Example	Below are two examples of calculating the step width. The resulting analog value outputs are shown in Figure 6-14. The acceleration/stopping distances have been parameterized with <i>STEP</i> 7.		
	Step width A = $\frac{59 \text{ increments}}{10}$		
	Step width A = 5.9 increments \approx 5 increments		
	Step width B = $\frac{105 \text{ increments}}{10}$		
	Step width B= 10.5 increments \approx 10 increments		
	The calculated step widths result in acceleration/stopping distance B being twice as long as acceleration/stopping distance A.		
Maximum Analog Value	The maximum analog value for controlling a frequency converter is calculated according to the following formulae: $v = \frac{10 V}{256} \times (256 - BREAK) \text{ or } v = \frac{20 \text{ mA}}{256} \times (256 - BREAK)$		
	You specify the input parameter "BREAK" of SFB 39 in the user program (see Table 6-11).		

6.5 Effect of the Distance Between the Start and Destination Position on Controlling the Outputs

Dependencies	Control of the outputs depends on the distance between the start and destina- tion position of the axis.
Controlling a Rapid Traverse/ Creep Speed	Please note the behavior shown in Table 6-6 when defining the acceleration/ stopping distance with <i>STEP 7</i> and specifying the switch-off difference at the input parameter SWITCH_OFF_DIFF of SFB 39 for a rapid traverse/creep speed drive.

 Table 6-6
 Controlling Rapid Traverse/Creep Speed Drives

Contactor Circuit	Distance Between Start and Destination Position is	Description
Digital outputs	> Acceleration/stopping dis- tance + switch-off difference	It is started with rapid traverse (requirement: input parameter BREAK = 0).
	<pre>≤ Acceleration/stopping dis- tance + switch-off difference > Switch-off difference</pre>	It is started with creep speed.
\leq Switch-off difference		Does not start a positioning operation: POS_READY remains unchanged at "1".

ControllingPlease note the behavior shown in Table 6-6 when defining the acceleration/
stopping distance with STEP 7 and specifying the switch-off difference at the
input parameter SWITCH_OFF_DIFF of SFB 39 for controlling frequency
converters.

 Table 6-7
 Controlling Frequency Converters

Frequency Converter	Distance Between Start and Destination Position is	Description
Analog output Digital outputs	\geq 2 x acceleration/stopping dis- tance + switch-off difference	The axis traverses the entire acceleration and stopping dis- tance.
	<pre>< 2 x acceleration/stopping dis- tance + switch-off difference > Switch-off difference</pre>	The axis traverses the distance to the switch-off point half as ac- celeration distance and half as stopping distance. The max. ana- log value is not reached.
	\leq Switch-off difference	Does not start a positioning operation: POS_READY re- mains unchanged at "1".

Influencing the Velocity

The velocity at which the drive is controlled by the frequency converter can be influenced at the BREAK input parameter of SFB 39. SFB 39 is described in Section 6.7.

6.6 Wiring

This section describes

- How to connect the incremental encoder and the reference point switch to the integral inputs/outputs
- How to connect the different power sections to the integral inputs/outputs

In this Section	Section	Contents	Page
	6.6.1	Connecting the Incremental Encoder and the Reference Point Switch to the Integral Inputs/Outputs	6-24
	6.6.2	Connecting the Power Section to the Integral Inputs/Outputs	6-26

6.6.1 Connecting the Incremental Encoder and the Reference Point Switch to the Integral Inputs/Outputs

Introduction	You connect tracks A and B of the incremental encoder and the reference signal to 3 digital inputs of the CPU 314 IFM.			
Evaluating the Zero Mark Signal	Most incremental encoders supply at each revolution a zero mark signal that can be used for synchronization. If you want to evaluate the zero mark signal of the incremental encoder, connect it to the reference point switch digital input (I 126.2).			
	You will find information on pulse eval function in Appendix D.	uation via the Po	ositioning integrated	
Using Inputs for the Integrated Function	Please note the following when using the Positioning integrated function:	Please note the following when using the integral inputs/outputs with the Positioning integrated function:		
	Note			
	For the proper functioning of the Positioning integrated function, you must not use anywhere else the inputs of the integral inputs/outputs used by the Positioning integrated function.			
Standard Inputs	You can use the special inputs not requi function as standard digital inputs. How sible at these inputs. (Special inputs = I	vever, interrupt in	nitiation is not pos-	
Terminals	Table 6-8 shows you the relevant termin the CPU 314 IFM for connecting the in- point switch.			
	Table 6-8 Terminals for Incremental E	Encoders and Refe	rence Point Switch	
	Terminal	Identifier	Description	
	2	I 126.0	Track A	
	3	I 126.1	Track B	
	4	I 126.2	Reference point switch	
	Connection of CPU voltage supply	L+	Supply voltage	
	Connection of CPU voltage supply	М	Ground	

Terminal Connection Model

Figure 6-15 shows the connections to the integral inputs/outputs. A BERO is used as the reference point switch.

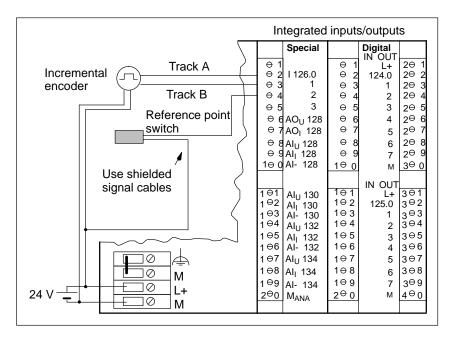


Figure 6-15 Connecting Incremental Encoder and Reference Point Switch

Shielding You must use shielded signal cables for connecting the sensors and connect the cable shielding to ground. Use the shield connecting element for this purpose.

You will find detailed information on applying the cable shielding in the manual *S7-300 Programmable Controller, Installation and Hardware*.

6.6.2 Connecting the Power Section to the Integral Inputs/Outputs

Introduction	There are 4 digital outputs and 1 analog output available to you at the inte- gral inputs/outputs for connecting the power section. A contactor circuit for rapid traverse/creep speed drives or a frequency converter can be used as the power section.				
Enabling Outputs	If you have used <i>STEP 7</i> to parameterize the CPU for positioning, the relevant outputs of the integral inputs/outputs will be automatically enabled for the Positioning integrated function.				
Using Outputs for IF	Please note the following when using the integral inputs/outputs with the Positioning integrated function:				
	Note				
		e the outputs of	sitioning integrated function, you must the integral inputs/outputs used by the		
Standard Outputs	You can use the outputs not required by the Positioning integrated function as standard digital outputs/analog output.				
Contactor Circuit	The contactor circuit is connected to 4 digital outputs.				
Terminals	Table 6-9 shows you the relevant terminals.				
	Table 6-9Terminals for the Contactor Circuit				
	Terminal Identifier Description				
	21	L+	Supply voltage		
	22	Q 124.0	Creep speed digital output		
	23	Q 124.1	Rapid traverse digital output		
	24	Q 124.2	Backward direction digital output		
	25	Q 124.3	Forward direction digital output		
	30 M Ground				

Terminal Connection Model

Figure 6-16 is an example of how the contactor circuit is wired.

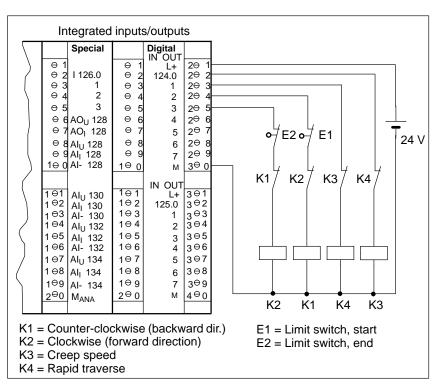


Figure 6-16 Connecting the Contactor Circuit

Description of the Contactor Circuit

Contactors K1 and K2 control clockwise and anti-clockwise rotation of the motor. Both contactors are interlocked against each other by NC contacts K1 and K2. If either of the limit switches K1 or K2 is reached, the motor switches off.

Contactors K3 and K4 switch the motor from rapid traverse to creep speed. Both contactors are interlocked against each other by NC contacts K3 and K4.

Caution

Interlock the contactors against each other as shown in Figure 6-16!

Failure to observe this regulation can lead to a short-circuit in the power network and result in the destruction of components.

Frequency Converter	If you control a freque	If you control a frequency converter, the following outputs are connected:			
	• Velocity analog output (current or voltage) and possibly				
	• Forward direction converter can only		lirection digital outputs (if the frequency e analog signals).		
Terminals	Table 6-10 shows you	the relevant ter	minals.		
	Table 6-10Terminals for Frequency Converters				
	Torminal	Idoptifior	Description		

Terminal Identifier Description 6 AO_U 128 Velocity voltage analog output 7 AO_I 128 Velocity current analog output 20 M_{ANA} Analog ground 24 Q 124.2 Backward direction digital output 25 Q 124.3 Forward direction digital output 30 Μ Ground

Terminal Connection Model 1 Analog Output and 2 Digital Outputs

Figure 6-17 shows an example wiring a frequency converter with 1 analog output and 2 digital outputs. Control here is via the velocity current analog output.

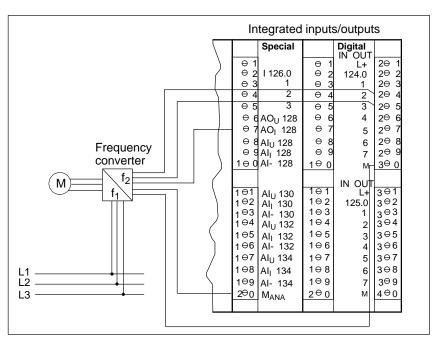


Figure 6-17 Connecting a Frequency Converter with 1 Analog Output and 2 Digital Outputs

Terminal Connection Model 1 Analog Output

Figure 6-18 shows an example wiring a frequency converter with 1 analog output. Control here is via the velocity voltage analog output.

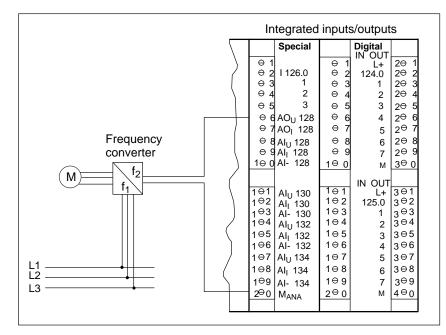


Figure 6-18 Connecting a Frequency Converter with 1 Analog Output

6.7 System Function Block 39

This Section

This section describes the structure of SFB 39, the functional principle of the input and output parameters of SFB 39 and the functionality of the Position-ing integrated function.

In this Section

Section	Contents	Page
6.7.1	Synchronization	6-33
6.7.2	Executing Jog Mode	6-38
6.7.3	Executing a Positioning Operation	6-40
6.7.4	Behavior of the Input and Output Parameters of SFB 39 at CPU Operating State Transitions	6-42

Structure of
SFB 39The Positioning integrated function is assigned to SFB 39. Figure 6-19 is a
graphical representation of SFB 39.

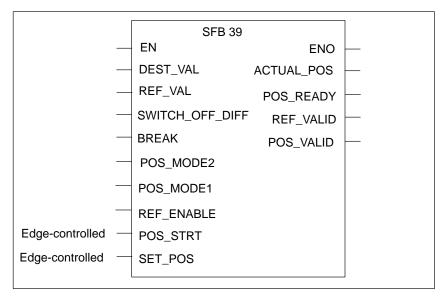


Figure 6-19 Graphical Representation of SFB 39

Input Parameters of SFB 39

Table 6-11 contains a brief description of the input parameters. The relationships between the input and output parameters are explained in more detail in the sections following this.

Input Parameter	Description
EN	EN is the enable input of SFB 39. This enable input causes the SFB to be executed. The SFB is executed as long as EN=1. When EN=0, the SFB is not executed.
DEST_VAL	The destination position approached by the Positioning integrated function is stored at this input parameter.
	Caution In the synchronized state, the traverse range must be within the value range. The limits of the value range are not monitored. In the event of an overflow, counting continues with the smallest or greatest value in the value range.
	Data type: DINT Address ID: I,Q,M,L,D Value range: from -2147483648 to 2147483647
REF_VAL	You can store a new reference point at this input parameter. The reference point is accepted at synchronization (see Section 6.7.1).
	Data type: DINT Address ID: I,Q,M,L,D Value range: from -2147483648 to 2147483647
SWITCH_OFF _DIFF	You determine the switch-off difference (difference between the switch-off point and the destina- tion position) in distance increments at this input parameter.
	Data type: WORD Address ID: I,Q,M,L,D Value range: from 0 to 65535
BREAK	With this input parameter, you specify the maximum analog value with which a traverse move- ment can be controlled. The maximum analog value determines the maximum velocity of the traverse.
	The following applies when controlling a frequency converter:
	$v = \frac{10 V}{256} \times (256 - BREAK) \text{ or } v = \frac{20 mA}{256} \times (256 - BREAK)$
	The maximum analog value you can specify is 10 V or 20 mA, that is, BREAK = 0.
	The following applies when controlling a contactor circuit:
	If BREAK = 0, traverse is carried out at rapid traverse and creep speed. IF BREAK 0, traverse is only at creep speed.
	Data type: BYTE Address ID: I,Q,M,L,D Value range: from 0 to 254
POS_MODE1, POS_MODE2	Jog mode is started and executed by combining POS_MODE1, POS_MODE2 and POS_STRT (see Section 6.7.2).
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)
REF_ENABLE	This input parameter is used for selecting and enabling synchronization per hardware (see Section 6.7.1).
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)
POS_STRT	The positioning operation is started following a rising edge at this input parameter (see Section 6.7.3).
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)
SET_POS	Following a rising edge at this input parameter, the value at the REF_VAL input parameter is accepted as the new actual value by the integrated function (synchronization per software; see Section 6.7.1).
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)

Output Parameters Table 6-12 contains a brief description of the output parameters of SFB 39. The relationships between the input and output parameters are explained in the sections following this.

Please note: If the start position of the axis is in immediate proximity to a reference point or a switch-off point, inconsistencies between the indicated actual value and the status signals of the integrated function can result before the next increment is received.

Output Parameter	Description		
ENO	The ENO output parameter indicates whether an error has occurred during execution of SFB 39. IF ENO=1, no error has occurred. IF ENO=0, SFB 39 has not been executed or an error occurred during execution (see Appendix E).		
ACTUAL_POS	The current actual position is continuously output at this output parameter.		
	Data type: DINT Address ID: I,Q,M,L,D Value range: from -2147483648 to 2147483647		
POS_READY (status signal)	This output parameter indicates whether the positioning operation or jog mode are running. If the positioning operation/jog mode has been completed (POS_READY = 1), a new positioning operation can be started.		
	The positioning operation/jog mode is considered completed when the switch-off point has been reached or the positioning operation/jog mode has been aborted.		
	Caution There is no guarantee that the axis is stopped if POS_READY = 1.		
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)		
REF_VALID (status signal)	This output parameter indicates whether the reference point switch has been reached or not. It is set when hardware synchronization has taken place.		
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)		
POS_VALID (status signal)	This output parameter indicates whether the actual position of the axis has been synchronized with the actual value of the integrated function.		
	If the signal state is 0, synchronization has not taken place. The positioning operation cannot be started and only jog mode is possible.		
	Data type: BOOL Address ID: I,Q,M,L,D Value range: 0/1 (FALSE/TRUE)		

Table 6-12 Output Parameters of SFB 39

CPU Operating State Transitions

See Section 6.7.4 for the states of the input and output parameters of SFB 39 in the case of CPU operating state transitions.

6.7.1 Synchronization

Two Synchroniza- tion Methods	The following synchronization methods are available for the integrated func- tion:
	• Software synchronization via the SET_POS input parameter of SFB 39
	• Hardware synchronization via evaluation of the reference point switch digital input I 126.2 via the integrated function.
Software Synchronization	A new reference point is stored via the REF_VAL input parameter at SFB 39. This reference point is accepted as the actual value if:
	• POS_READY = 1 and
	• a rising edge occurs at SET_POS
	The POS_VALID (synchronization has taken place) output parameter is also set.
	Please note : If SET_POS = 1 is set when POS_READY = 0, synchronization does not take place. Synchronization also does not take place if POS_READY changes back to "1".
	Note
	If other edges at input parameters of SFB 39 occur simultaneously with SET_POS, these edges will not be evaluated by the integrated function until the next time the SFB is executed or at the next cycle control point(if updating of the instance DB at the cycle control point has been parameterized using <i>STEP 7</i>).
Hardware Synchronization	A new reference point is stored via the REF_VAL input parameter in SFB 39. This reference point is accepted as the actual value if:
	• $REF_ENABLE = 1$
	• Signal state at I 126.2 changes from "0" to "1"
	• The actual direction agrees with the direction parameterized in <i>STEP</i> 7 when the next counting pulse is evaluated (see Table 6-5).

The POS_VALID (synchronization has taken place) and REF_VALID (reference point switch reached) output parameters are set to "1".

Synchronization, 2 Cases

Figure 6-20 shows 2 cases where synchronization takes place:

- Case 1: Start synchronization via REF_ENABLE input parameter
- Case 2: Start synchronization by starting jog mode (of the positioning operation)

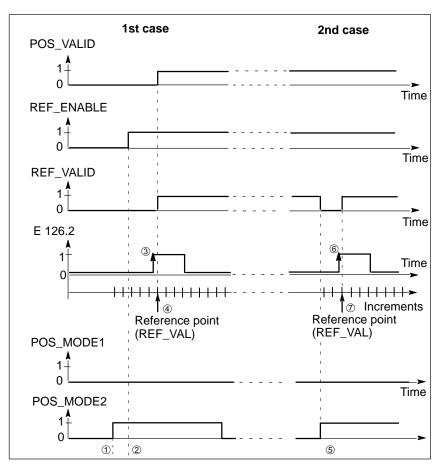


Figure 6-20 Starting Synchronization

Explanation Table 6-13 contains the explanatory notes on Figure 6-20.

Case	Time	Event
Case 1: Start synchro- nization via REF ENABLE	1	Jog mode forward is started via POS_MODE2.
	2	The signal state at REF_ENABLE changes from "0" to "1": REF_VALID = 0.
	3	A rising edge occurs at the input of the reference point switch I 126.2.
	4	The new reference point at REF_VAL is accepted by the integrated function as the new actual value (synchronization takes place if this requirement is met: Parameterized direction agrees with actual direction). POS_VALID and REF_VALID are set.
Case 2: Start synchro- nization via starting Jog Mode	5	POS_VALID and REF_ENABLE have signal state "1". Jog mode forward is re- started via POS_MODE2. REF_VALID = 0.
	6	A rising edge occurs at the input of the reference point switch I 126.2.
	1	The new reference point at REF_VAL is accepted by the integrated function as the new actual value (synchronization takes place if this requirement is met: Parameterized direction agrees with actual direction). REF_VALID is set.

Table 6-13	Starting Synchronization
------------	--------------------------

Synchronization Does Not Take Place	Although REF_ENABLE = 1 and an edge occurs at I 126.2, synchronization does not take place.
	Reason: If the 1st pulse at I 126.0 is detected against the parameterized direc- tion, synchronization does not take place. The edge at I 126.2 is no longer used. That is, even if the 2nd pulse is detected in the parameterized direction, synchronization does not take place.
Resynchronization	Resynchronization to a new reference point is possible during a positioning operation or jog mode if the REF_ENABLE input parameter changes to "1" and the traversing direction is maintained. The reference point becomes valid as the new actual value when reference point switch I 126.2 is reached.
	This means that a new destination position is approached that is located on the axis, offset to the old destination position by the difference between the new and old actual value.
	Note
	If a positioning operation/jog mode is started with REF_ENABLE = 1, REF_VALID is set to "0". If the instance DB is not updated between reach- ing the reference point and starting the next positioning operation/jog mode,

ing the reference point and starting the next positioning operation/jog mod REF_VALID is not set to "1" although correct synchronization has taken place.

Synchronization/ Resynchronization

Figure 6-21 illustrates synchronization with later resynchronization.

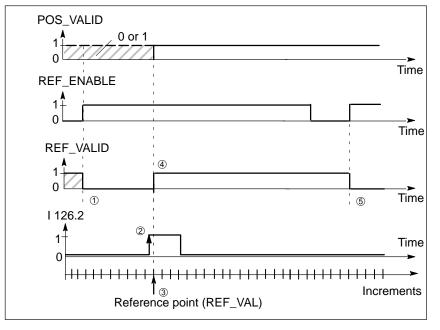


Figure 6-21 Hardware Synchronization and Resynchronization

Explanatory Notes Table 6-14 contains explanatory notes on Figure 6-21. **on Figure 6-21**

Table 6-14	Hardware Synchronization and Resynchronization
14010-14	That water Synchronization and Resynchronization

Time	Event
1	Regardless of whether synchronization has taken place or not (POS_VALID = 0 or 1), REF_ENABLE is set to "1". If REF_VALID is set, it will be reset.
2	A rising edge occurs at the input of the reference point switch I 126.2.
3	The new reference point at REF_VAL is accepted as the new actual value by the integrated function (synchronization takes place if this requirement is met: Parameterized direction agrees with actual direction). POS_VALID is set if not already set. REF_VALID is set.
4	If resynchronization is to take place, you must evaluate REF_VALID. REF_VALID must have signal state "1".
5	If REF_ENABLE changes again from "0" to "1", REF_VALID is reset and resynchronized to a new reference point REF_VAL after the next edge at I 126.2 (see ② and ③).

Special Cases with Frequency Converters

Table 6-15 lists the special cases which can occur when controlling a frequency converter.

Table 6-15Special Cases During Synchronization
(Frequency Converter)

Special Case	Explanation
New switch-off point has already been passed	If, during synchronization, the integrated function detects that the new switch-off point has already been passed, all remaining steps of the analog value are output at intervals of 1 increment until analog value "0" is reached.
New reference point is within stopping distance	If, during synchronization, the integrated function detects that the new reference point is within the stopping distance of the positioning operation/jog mode, all steps of the analog value are output at intervals of 1 increment until the currently valid value is reached.
Synchronization takes place within ac- celeration distance	If the positioning operation/jog mode is within the acceleration distance during synchronization, all steps of the analog value are output until the currently valid value is reached. If necessary,
	• the analog value will be output at intervals of 1 increment until the highest step is reached and then the stopping dis- tance is started.
	• the acceleration distance/stopping distance will be in- creased.

Special Cases with Contactor Circuit

Table 6-16 lists special cases which can occur when controlling a contactor circuit.

 Table 6-16
 Special Cases During Synchronization (Contactor Circuit)

Special Case	Explanation
New switch-off point has already been passed	If, during synchronization, the integrated function detects that the new switch-off point has already been passed, traverse is continued for 1 increment at creep speed and then switched off.
New reference point is within stopping distance	If, during synchronization, the integrated function detects that the new reference point is within the stopping distance of the current positioning operation/jog mode, traverse is continued at creep speed until the switch-off point is reached.

Caution

If the special cases shown in Tables 6-15 and 6-16 cause impermissible or unforeseeable operating states of the axis, you must ensure there is no destination position or acceleration/stopping distance in the area of the reference point switch I 126.2.

6.7.2 Execute Jog Mode

Jog Mode	Jog mode corresponds to a positioning operation in the value range – 2147483648 to 2147483647 increments.
Please Note	Jog mode is only started if the actual value is at the following interval to the lower or upper limit of the value range given above:
	• ≥ 2 x acceleration distance or stopping distance in the case of frequency converters
	• > stopping distance in the case of a contactor circuit.
	After a CPU STOP-RUN transition, the instantaneous actual value is taken from the instance DB. If this actual value is so close to one of the value range limits that jog mode cannot be started, you specify a new actual value with a rising edge at SET_POS to be able to then start jog mode.
Selecting Jog Mode	Table 6-17 explains how to combine the input and output parameters for se- lecting/terminating jog mode. Please note : Input parameter combinations other than those listed in
	Tables 6-17 and 6-18 are ignored.

Jog Mode	Input/Output Parameter	Description
Jog mode forward*	Requirement: POS_READY = 1 POS_MODE1 = 0 POS_MODE2 = 1 POS_STRT = 0	Jog mode forward is started and POS_READY is reset (see Figure 6-22).
Jog mode backward*	Requirement: POS_READY = 1 POS_MODE1 = 1 POS_MODE2 = 0 POS_STRT = 0	Jog mode backward is started and POS_READY is reset.
Terminate jog mode	POS_MODE1 = 0 POS_MODE2 = 0	Jog mode is terminated. POS_READY is then set to "1" (See Figure 6-22).
Terminate jog mode and start in oppo- site direction	Change previous signal states of POS_MODE1 and POS_MODE2 POS_STRT = 0	Jog mode is terminated. POS_READY is then set to "1". After POS_READY has been set to "1", jog mode is started in the opposite direction at the next SFB call or at the next cycle control point.
Abort jog mode	POS_MODE1 = 1 POS_MODE2 = 1	The currently running jog mode is aborted immediately. POS_READY is set to "1" (see Figure 6-22).

Table 6-17Selecting Jog Mode

* If you set POS_MODE1 or 2 when POS_READY = 0, jog mode will not be started. It will also not be started if POS_READY = 1. Remedy: Reset POS_MODE1 or 2 back to "0" and start jog mode again as soon as POS_READY = 1.

Terminating Jog Mode	For frequency converters, terminating means:		
	• jog mode is terminated normally via the stopping distance to the switch- off point.		
	For contactor circuits, terminating means:		
	• jog mode is terminated normally via creep speed to the switch-off point.		
Aborting Jog Mode	Both for frequency converters and for contactor circuits, "Abort jog mode" means that all outputs are immediately set to "0". The traverse is not continued to the switch-off point to terminate jog mode. Jog mode can only be restarted after POS_MODE1 = 0 and POS_MODE2 = 0 has been specified.		
Jog Mode	Figure 6-22 shows jog mode forward, terminating jog mode and aborting jog		

Figure 6-22 shows jog mode forward, terminating jog mode and aborting jog mode using a contactor circuit example.

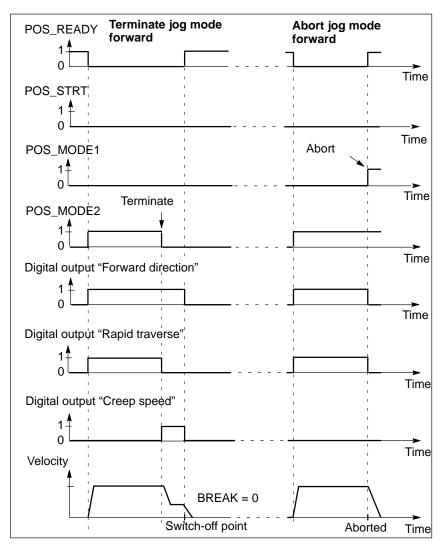


Figure 6-22 Jog Mode Forward and Terminating/Aborting Jog Mode

Examples

6.7.3 Executing a Positioning Operation

Executing a	Figure 6-18 explains how to combine the input and output parameters for	
Positioning	selecting/terminating a positioning operation.	
Operation	Please note: Input parameter combinations other than those listed in	
	Tables 6-17 and 6-18 are ignored.	

Table 6-18	Executing a	Positioning	Operation
14010 0 10	Line e ating a	obitioning	operation

Positioning Operation	Input/Output Parameter	Description
Start positioning op- eration*	Requirement: POS_READY = 1 Rising edge at POS_STRT POS_MODE1 = 0 POS_MODE2 = 0	The positioning operation is started with the rising edge at POS_STRT. The destination position specified at DEST_VAL is ac- cepted and POS_READY is reset.
Positioning operation running	POS_STRT = 1	The positioning operation is running and terminates itself when the switch-off point is reached. POS_READY is set to "1".
Terminate position- ing operation prema- turely	Falling edge at POS_STRT	The positioning operation is terminated prematurely. POS_READY is then set to "1".
Abort positioning operation*	POS_MODE1 = 1 POS_MODE2 = 1	The currently running positioning operation is aborted. POS_READY is set to "1".

* If the input parameters POS_MODE1/POS_MODE2 are set, you must reset them to "0" before they can be evaluated again by the integrated function.

Terminating the Positioning Operation	For frequency converters, terminating means:The positioning operation is terminated normally via the stopping distance to the switch-off point.
	For contactor circuits, terminating means:
	• The positioning operation is terminated normally via creep speed to the switch-off point.
Aborting the Positioning Operation	Both for frequency converters and for contactor circuits, "Abort positioning operation" means that all outputs are immediately set to "0". The traverse is not continued to the switch-off point to terminate the positioning operation.

Explanatory Notes Table 6-19 contains explanatory notes on Figure 6-23. **on Figure 6-23**

Table 6-19	Positioning Operation for	or Rapid Traverse/Creep Speed Drive
------------	---------------------------	-------------------------------------

Time	Event
1	POS_MODE1 and POS_MODE2 have signal state "0". The positioning operation is started by a rising edge at POS_STRT. POS_READY (previous positioning operation terminated) is simultaneously reset.
2	The integrated function switches to creep speed for the stopping distance.
3	The switch-off point is reached. This terminates the positioning operation. This is indicated with $POS_READY = 1$.

Positioning Operation Example

Figure 6-23 shows an example of a positioning operation over time. A positioning operation is started and a destination position is approached with a rapid traverse/creep speed drive.

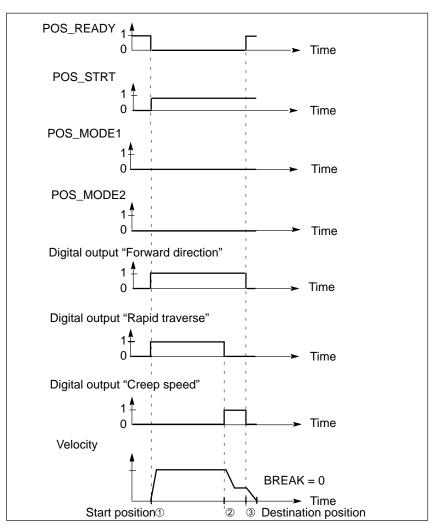


Figure 6-23 Positioning Operation for Rapid Traverse/Creep Speed Drive Forward

6.7.4 Behavior of the Input and Output Parameters of SFB 39 at CPU Operating State Transitions

STOP Operating	If the CPU 314 IFM is in the STOP mode, the integrated function is not ac-	
State	tive.	

Operating State
ChangeTable 6-20 describes the input/output parameter states that occur depending
on the change of operating state.

Section 2.6 contains further information on the behavior of the integrated function in the different CPU operating states.

CPU Operating State	Input/Output Parameter State	Description
STOP → RUN	ACTUAL_POS is not affected POS_VALID = 0 REF_VALID = 0 POS_READY = 1	currently being output The integrated function is not synchronized and must be synchronized before a positioning operation can be started (see Section 6.7.1).
RUN → STOP	$SET_POS = 0$ $POS_STRT = 0$	No new reference point is accepted as the actual posi- tion. Positioning operation not executed.
RUN → STOP → RUN	Consequences from the above-men- tioned state of the parameters at → RUN and RUN → STOP transition: REF_ENABLE not affected POS_MODE_1 not affected POS_MODE_2 not affected	 The state prior to CPU changing to STOP is accepted, e.g.: if REF_ENABLE was = 1, hardware synchronization is possible if jog mode had been selected, jog mode will be started Remedy: Initialize REF_ENABLE; POS_MODE1 and POS_MODE2 in OB 100 with "0" ("0" = FALSE).

Table 6-20 Effects of a Change in CPU Operating State on the Integrated Function

6.8 Structure of the Instance DB

Instance DB	Table 6-21 shows you the structure and assignments of the instance DB of the
of SFB 39	Positioning integrated function.

Operand	Symbol	Meaning
DBD 0	DEST_VAL	Destination position
DBD 4	REF_VAL	Reference point
DBW 8.0	SWITCH_OFF_DIFF	Switch-off difference
DBB 10	BREAK	Maximum velocity (max. analog value)
DBX 11.0	POS_MODE2	Jog mode forward
DBX 11.1	POS_MODE1	Jog mode backward
DBX 11.2	REF_ENABLE	Evaluate reference point switch
DBX 11.3	POS_STRT	Start positioning operation
DBX 11.4	SET_POS	Set actual value
DBD 12	ACTUAL_POS	Actual position
DBX 16.0	POS_READY	Positioning operation/jog mode terminated
DBX 16.1	REF_VALID	Reference point switch has been reached
DBX 16.2	POS_VALID	Synchronization has taken place
DBX 16.4 to 16.7	-	Reserved internally

Table 6-21 Instance DB of SFB 39

Length of the Instance DB

The data for the Positioning integrated function are 18 bytes long and begin with address 0 in the instance DB.

6.9 Calculating the Cycle Time

Introduction	Calculation of the cycle time for the CPU 314 IFM is described in detail in the manual <i>S7-300 Programmable Controller, Installation and Hardware.</i> Here, we also list those times that must be included in the calculation when the Positioning integrated function is running.
Calculation	You can calculate the cycle time according to the following formula:
	Cycle time = $t_1 + t_2 + t_3 + t_4$
	$t_1 = Process image transfer time (PII and PIQ)^1$
	$t_2 = Operating system runtime including onloading resulting from integrated function2$
	$t_3 =$ User program execution time including SFB runtime if SFB call occurs in the program cycle ³
	t_4 = Updating time of the instance DB at the cycle control point (if updating has been parameterized in <i>STEP 7</i>).
SFB 39 Runtime	The runtime of the SFB is typically 150 µs.
Updating the Instance DB	The updating time of the instance DB at the cycle control point is typically $100 \ \mu s$ for the Positioning integrated function.
Increase in Cycle Time	 Please note that the cycle time can increase as a result of: Time-controlled execution Interrupt processing Diagnostics and error processing

¹ See the manual *S7-300 Programmable Controller, Installation and Hardware* for the time for the CPU 314 IFM.

² You must calculate the user program execution time since it depends on your user program. **Please note**: At the boundary frequency of 10 kHz, the execution of the user program can increase by approximately 10%.

³ If the SFB is called several times in a program cycle, you must multiply the execution time of the SFB by the number of calls.

6.10 Application Examples

This Section	This section contains 3 application examples of the Positioning integr function. The examples are the following practice-oriented application			
	• Cutting foil to length with synchronization to the workpiece start a cutter	at the		
	• Positioning cans of paint on a conveyor belt with synchronization to the workpiece start by a BERO			
	• Positioning a worktable with synchronization at a reference point in jog mode	switch		
In this Costion		P		

Section	Contents	Page
6.10.1	Cutting Foil to Length	6-46
6.10.2	Positioning Paint Cans	6-52
6.10.3	Positioning a Worktable	6-60

In this Section

6.10.1 Cutting Foil to Length

Task	An endless roll of foil is to be cut into lengths of 2 m.
	An incremental encoder detects the distance between the start of the foil and the current actual position.
	The foil is stopped for machining, that is, for cutting. The drive is controlled depending on the current actual position.
Installing New Roll; Correcting Faults	If a new roll is installed, the start of the foil may be irregular; if machine faults have occurred during operation, the foil may be damaged. In such cases, jog mode is used.
	The foil is rolled off by the operator via the user program until the irregular foil start is behind the cutter. The foil is then cut and reference point 0 is taken by the integrated function as the new actual value.
	The positioning operation is then started via the user program.
Wiring	Figure 6-24 shows the technology schematic and the wiring of the example. The power section is a frequency converter with an analog output ± 10 V for direction and velocity.

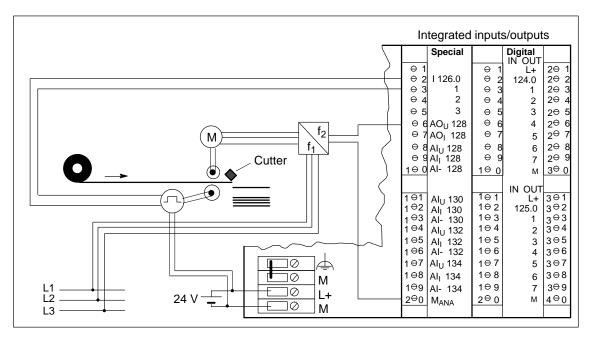


Figure 6-24 Cutting Foil to Length

Function of the Inputs and Outputs

Table 6-22 lists the functions of the inputs and outputs for the example.

Terminal	Input/ Output	Function in the Example
2	I 126.0	Encoder track A
3	I 126.1	Encoder track B
6	AO _U 128	Analog output velocity voltage
20	M _{ANA}	Analog ground
Connection of voltage supply to the CPU	L+	Supply voltage
Connection of voltage supply to the CPU	М	Ground

Table 6-22	Switching the Inputs and Outputs (Example 1)
------------	--

Assigning mm Distance to Pulses (Distance Increments)

The incremental encoder supplies 100 pulses per revolution. 1 revolution of the incremental encoder corresponds to 5 revolutions of the motor. The incremental encoder therefore supplies 20 pulses per motor revolution. The foil moves 4 mm per motor revolution.

4 mm : 20 pulses = 0.2 mm

One pulse is accordingly assigned a distance of 0.2 mm. 1 pulse corresponds to 1 distance increment.

In Figure 6-25, you can see the distances/pulses assignment within a positioning operation. The foil is cut to lengths of 2 m. Conversion of mm to pulses (distance increments) is as follows:

2000 mm: 0.2 mm = 10000 pulses (distance increments)

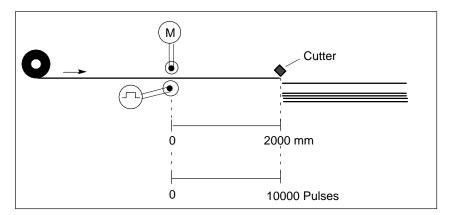


Figure 6-25 Assignment of Distances/Pulses

Distance to be Covered

You specify the destination position of **10000** pulses (distance increments) to SFB 39.

Maximum Velocity	The foil consists of tear-resistant material so there is a maximum analog value of 10 V at the analog output (V = 10). Specify BREAK = 0 at SFB 39 according to the following equation. $v = \frac{10 V}{256} \times (256 - BREAK) \text{ or } BREAK = 256 \times (1 - \frac{V}{10 V})$			
Determining the Acceleration/ You must parameterize the distance to be traversed from the star tioning operation until the maximum velocity is reached.				
Stopping Distance	The maximum velocity is to be reached after 0.1 m. Conversion from mm to pulses is as follows:			
	100 mm: 0.2 mm = distance	500 pulses (distance in	ncrements) = Acceleration/stopping	
Parameterizing with STEP 7	You parameterize the CPU with STEP 7 as follows:			
	Table 6-23Parameters for Cutting Foil to Length			
	Parameter	Input	Explanation	
	Electrical charac- teristics	1 analog output (AQ)	The motor is driven via a frequency converter with one analog output ± 10 V for direction and velocity.	

Acceleration dis- tance to maximum velocity (= stop- ping distance)	500	You define the distance in distance in- crements in which the analog value is output to the maximum value or re- duced to "0".
Evaluation of the reference point switch for direction	Forward direction	The reference point switch is evaluated when it is reached in the forward direc- tion.
Number of the instance DB	59	Instance DB for the example (default value)
Automatic updat- ing at the cycle control point	Activated	The instance DB us updated at each cycle control point.

Determining the	
Switch-Off	
Difference	

To ensure that the destination position is reached as accurately as possible, you must:

- 1. Specify switch-off difference 0 to SFB 39 via the user program
- 2. Move the foil once via the Positioning integrated function
- 3. Measure the difference between the actual destination position reached and the specified destination position
- 4. Specify this difference as the switch-off difference in increments to SFB 39

In the example, the data are stored in instance DB 59.

Instance DB of SFB 39

SFB 39

Initialization of

Figure 6-26 shows SFB 39 with initialized parameters from DB 10.

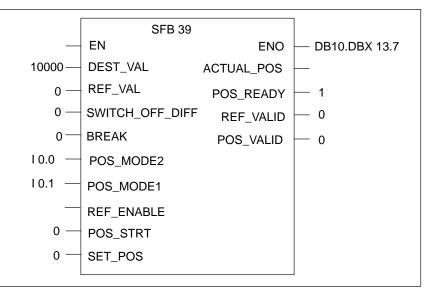


Figure 6-26 Initialization of SFB 39 on Start-Up (1)

User Program	Below is the user program for the example. It has been created with the STL
	Editor in STEP 7.

DB 10 The data for SFB 39 are stored in DB 10. The DB has the following structure:

Table 6-24 Example 1: Positioning, DB 10 Structure

Address	Name	Туре	Starting value	Comment
0.0		STRUCT		
+0.0	DEST_VAL	DINT	L#10000	Destination position: Length of the foil = 2 m
+4.0	REF_VAL	DINT	L#0	Reference point = 0
+8.0	SWITCH_OFF_DIF F	INT	0	Switch-off difference (calculated at startup)
+10.0	Break	BYTE	B#16#0	Maximum velocity = 10 V
+11.0		BYTE	B#16#0	Unused
+12.0	Control byte	BYTE	B#16#0	Control bits for positioning
+13.0	Checkback byte	BYTE	B#16#0	Checkback status bits from position- ing
=14.0		END_STRUCT		

Statement Section You enter the following user program in the statement section of OB 1: **OB 1**

twork 1			
Call po	ositioning		
			-
	LL SFB		
	_	:=DB10.DBD0	Destination position (foil length = 2 m)
	—	:=DB10.DBD4	Reference point (foil start)
		DIFF:=DB10.DBW8	Switch-off difference
	REAK	:=DB10.DBB10	
PO	OS_MODE2	:=DB10.DBX12	-
PO	OS_MODE1	:=DB10.DBX12	.1 Jog mode backward
	EF_ENABLE		
PO	OS_STRT	:=DB10.DBX12	.2 Start positioning operation
SI	SET_POS :=DB10.DBX12.3		
A	ACTUAL_POS :=		value
P	OS_READY		
RI	REF_VALID :=DB10.DBX13.1		.1 Checkback signal: Ref. point switch reached
P	OS_VALID	:=DB10.DBX13	.2 Checkback signal: Synchron. has taken place
A	BR		Scanning the BR bit (= ENO at SFB 39) for
=	DB10.D	DBX 13.7	error evaluation
	·····		-
Setting	g up the fo	 oil	-
Setting		oil DBX 12.4	 During job execution: Cut foil? If yes,
	DB10.D		 During job execution: Cut foil? If yes, then jump to execution: Cut foil
 A	DB10.D ml I	DBX 12.4	
A JC	DB10.D ml I	DBX 12.4	then jump to execution: Cut foil
A JC A	DB10.D ml I I	DBX 12.4	then jump to execution: Cut foil Momentary-contact switch: Jog forward
A JC A AN	DB10.D ml I I I	DBX 12.4 0.0 0.1	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward
A JC A AN AN	DB10.D ml I I J DB10.D	DBX 12.4 0.0 0.1 0.3 DBX 12.0	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic
A JC A AN AN =	DB10.D ml I I DB10.D I	DBX 12.4 0.0 0.1 0.3 DBX 12.0 0.1	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward
A JC A AN AN = A	DB10.D m1 I I DB10.D I I	DBX 12.4 0.0 0.1 0.3 DBX 12.0 0.1 0.0	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward Momentary-contact switch: Jog backward
A JC A AN AN = A	DB10.D ml I I DB10.D I I I I	DBX 12.4 0.0 0.1 0.3 DBX 12.0 0.1 0.0 0.3	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward Momentary-contact switch: Jog backward Interlock with jog forward
A JC A AN AN = A AN AN	DB10.D m1 I I DB10.D I I I I	DBX 12.4 0.0 0.1 0.3 DBX 12.0 0.1 0.0 0.3 DBX 12.1	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward Momentary-contact switch: Jog backward Interlock with jog forward Interlock with automatic Start jog backward Momentary-contact switch: Cut foil and set
A JC A AN AN = A AN AN =	DB10.D m1 I I DB10.D I I DB10.D I	DBX 12.4 0.0 0.1 0.3 DBX 12.0 0.1 0.0 0.3 DBX 12.1	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward Momentary-contact switch: Jog backward Interlock with jog forward Interlock with automatic Start jog backward Momentary-contact switch: Cut foil and set reference point
A JC A AN AN = A AN AN = A	DB10.D m1 I I DB10.D I I DB10.D I DB10.D	DEX 12.4 0.0 0.1 0.3 DEX 12.0 0.1 0.0 0.3 DEX 12.1 0.2	then jump to execution: Cut foil Momentary-contact switch: Jog forward Interlock with jog backward Interlock with automatic Start jog forward Momentary-contact switch: Jog backward Interlock with jog forward Interlock with automatic Start jog backward Momentary-contact switch: Cut foil and set

_				
 Au	tomatic	mode		
	 AN	I 0.3		Automatic mode switch
		DB10.DBX		Auxiliary memory marker for terminating auto
	BEC	DDIG.DDA	12.5	matic mode
	AN	DB10.DBX	12.2	Start positioning operation
	S	DB10.DBX	12.2	
	S	DB10.DBX	12.5	Set auxiliary memory marker for terminating
	BEC			automatic mode
	А	DB10.DBX	13.0	If positioning terminated, then
	S	DB10.DBX	12.4	set memory marker for cutting the foil
	R	DB10.DBX	12.2	
	R	DB10.DBX	12.5	Reset auxiliary memory marker
	BEU			
 ut f	oil, ac	cept refere	nce point	
			nce point	
	NOP		nce point	
	NOP A	0 I 0.7		nated
	NOP	0		
	NOP A	0 I 0.7 DB10.DBX	12.3	nated Reference point has been accepted by IF as
	NOP A A R	0 I 0.7 DB10.DBX	12.3 12.3	nated Reference point has been accepted by IF as new actual value
	NOP A A R R	0 I 0.7 DB10.DBX DB10.DBX	12.3 12.3	nated Reference point has been accepted by IF as new actual value Reset signal
	NOP A A R R R R	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX	12.3 12.3 12.4	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job
	NOP A A R R R L	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX Q 4.0	12.3 12.3 12.4	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter
	NOP A A R R R L	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX Q 4.0 S5T#500MS	12.3 12.3 12.4	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter Waiting time till drive standstill
	NOP A A R R R L A SD	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX Q 4.0 S5T#500MS DB10.DBX	12.3 12.3 12.4 12.4	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter Waiting time till drive standstill (e.g.: 500 ms) Positioning terminated,
	NOP A A R R L L A SD A	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX Q 4.0 S5T#500MS DB10.DBX T 1	12.3 12.3 12.4 12.4 13.0	Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter Waiting time till drive standstill (e.g.: 500 ms)
	NOP A A R R L L A SD A	0 I 0.7 DB10.DBX DB10.DBX DB10.DBX Q 4.0 S5T#500MS DB10.DBX T 1 DB10.DBX	12.3 12.3 12.4 12.4 13.0	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter Waiting time till drive standstill (e.g.: 500 ms) Positioning terminated,
ut f	NOP A R R L L A SD A A A A	0 I 0.7 DB10.DBX DB10.DBX Q 4.0 S5T#500MS DB10.DBX T 1 DB10.DBX DB10.DBX	12.3 12.3 12.4 12.4 13.0 12.4	nated Reference point has been accepted by IF as new actual value Reset signal Reset memory marker for cutting job Reset signal for cutter Waiting time till drive standstill (e.g.: 500 ms) Positioning terminated, Memory marker for cutting job set

6.10.2 Positioning Paint Cans

Task	We have a conveyor belt on which paint cans stand in a continuous sequence.		
	At one processing point, the paint cans are filled with paint. The conveyor belt is stopped at the relevant position until filling is completed.		
Marginal Conditions for	The following marginal conditions must be observed when designing the system:		
Positioning	• For mechanical reasons, the velocity must not exceed a system-specific maximum.		
	• A maximum acceleration must not be exceeded in order to avoid paint spills.		
	• The positioning operation is to run time-optimally so that as many paint cans as possible can be filled in the shortest time possible.		
	The motor is controlled via a frequency converter. The frequency converter is controlled by an analog output in order to guarantee as gentle a startup as possible, thus preventing paint spills.		
Switching On the System (Setting	After switching on the system, the Positioning integrated function is synchro- nized as follows:		
Up 1st Paint Can)	The conveyor belt is moved forward in jog mode via the user program until the reference point switch (BERO) detects the edge of a paint can. Simulta- neously, the system synchronizes to the edge of the paint can and the motor is switched off.		
	Then the positioning operation is started via the user program.		

Wiring Figure 6-27 shows the technology schematic and the wiring of the example. The power section is a frequency converter with an analog output ± 10 V for direction and velocity.

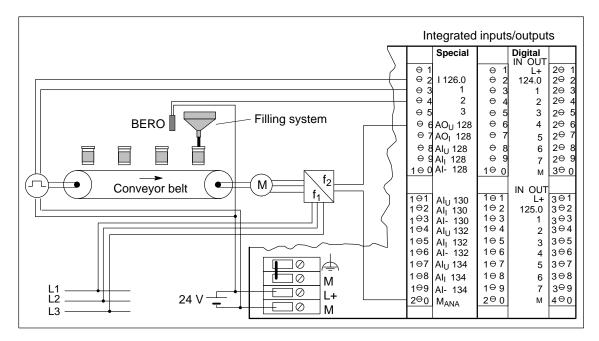


Figure 6-27 Positioning Paint Cans

Function of the Inputs and Outputs

Table 6-25 lists the functions of the inputs and outputs for the example.

Table 6-25	Switching the Inputs	and Outputs (Example 2)
14010 0 20	S withening the impact	and outputs (

Terminal	Input/ Output	Function in the Example
2	I 126.0	Encoder track A
3	I 126.1	Encoder track B
4	I 126.2	Reference point switch
6	AO _U 128	Analog output velocity voltage
20	M _{ANA}	Analog ground
Connection of CPU voltage supply	L+	Supply voltage
Connection of CPU voltage supply	М	Ground

Integrated Functions CPU 312 IFM/CPU 314 IFM EWA 4NEB 710 6058-02a

Positioning Operation Sequence (Automatic Mode) The positioning operation is started via the user program. The conveyor belt travels 300 mm in the forward direction to the destination position (approximate center of paint can).

When the edge of a paint can is detected by the BERO (reference point switch), the system synchronizes at actual value 50 mm. The conveyor belt stops at destination position 300 mm and the paint can is filled. Simultaneously, the system synchronizes to actual value 0 mm.

Figure 6-28 shows a section of the conveyor belt with the values to be specified for positioning in mm.

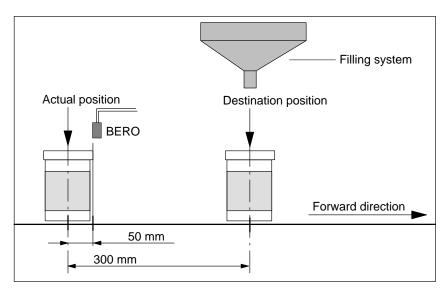


Figure 6-28 Positioning Operation Sequence

New Positioning Operation	When a paint can has been filled, the user program starts a new positioning operation. The conveyor belt travels 300 mm in the forward direction to the destination position and synchronization takes place again to actual value 50 mm at the edge of the paint can.
Assigning mm Distance to Pulses (Distance Increments)	The incremental encoder supplies 100 pulses per revolution. 1 revolution of the incremental encoder corresponds to 5 revolutions of the motor. The incremental encoder therefore supplies 20 pulses per motor revolution. The conveyor belt moves 40 mm per motor revolution.
	40 mm : 20 pulses = 2 mm
	One pulse is accordingly assigned a distance of 2 mm. 1 pulse corresponds to 1 distance increment.

Assigning Reference Point Switch and Destination Position In Figure 6-29, you can see assignment of distances/pulses to the reference point switch (BERO) within a positioning operation. Conversion of mm to pulses (distance increments) is as follows:

50 mm : 2 mm = 25 pulses (distance increments)

300 mm : 2 mm = 150 pulses (distance increments)

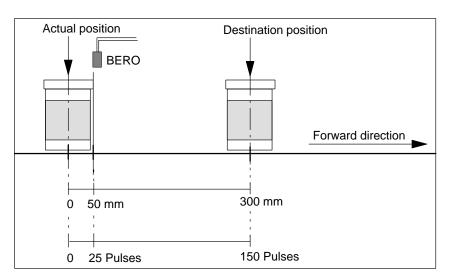


Figure 6-29 Assignment of Distances/Pulses

Distance to be Covered	You specify the destination position of 150 pulses (distance increments) to SFB 39.
Maximum Velocity	5 V is to be output as the maximum analog value at the analog output (v = 5). You specify BREAK = 128 to SFB 39 according to the following equation: $v = \frac{10 V}{256} \times (256 - BREAK) \text{ or } BREAK = 256 \times (1 - \frac{V}{10 V})$.
Determining the Acceleration/ Stopping Distance	You must parameterize the distance to be traversed from the start of the posi- tioning operation until the maximum velocity is reached.
Stopping Distance	The maximum velocity is to be reached after 0.1 m. Conversion from mm to pulses is as follows:
	100 mm : 2 mm = 50 pulses (distance increments) = Acceleration/stopping distance

Parameterizing with STEP 7

You parameterize the CPU with *STEP* 7 as follows:

Parameter	Input	Explanation
Drive control via	1 analog output (AQ)	The motor is driven via a frequency converter with one analog output ± 10 V for direction and velocity.
Acceleration dis- tance to maximum velocity (= stop- ping distance to standstill)	50	You define the distance in distance in- crements in which the analog value is output to the maximum value or re- duced to "0".
Evaluation of the reference point switch for	Forward direction	The reference point switch is evaluated when it is reached in the forward direc- tion.
Number of the instance DB	59	Instance DB for the example (default value)
Automatic updat- ing at the cycle control point	Activated	The instance DB us updated at each cycle control point.

 Table 6-26
 Parameters for Positioning Paint Cans

Determining the Switch-Off	To ensure that the destination position is reached as accurately as possible, you must:
Difference	1. Specify switch-off difference 0 to SFB 39 via the user program
	2. Move the conveyor belt once via the Positioning integrated function
	3. Measure the difference between the actual destination position reached and the specified destination position
	4. Specify this difference as the switch-off difference to SFB 39
Instance DB of SFB 39	In the example, the data are stored in instance DB 59.

Initialization of SFB 39

Figure 6-30 shows SFB 39 with initialized parameters from DB 2 for setting up the 1st paint can (jog mode).

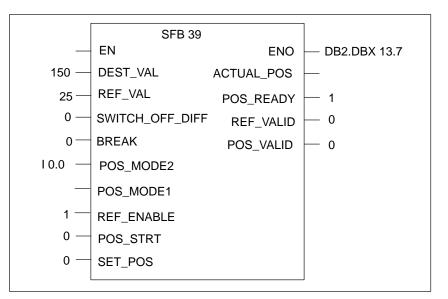


Figure 6-30 Initialization of SFB 39 on Start-Up (2)

User Program	Below is the user program for the example. It has been created with the STL
	Editor in STEP 7.

DB 2 The data for SFB 39 are stored in DB 2. The DB has the following structure:

Address	Name	Туре	Starting Value	Comment
0.0	DEST_VAL	DINT	L#150	Destination position: Center of paint can = 300 m
4.0	Reference point	DINT	L#0	always contains the currently valid reference point (Refp1 or Refp2)
8.0	SWITCH_OFF_DIFF	INT	0	Switch-off difference (calculated at startup)
10.0	Break	BYTE	B#16#80	Maximum velocity (hexadecimal) = 5 V
11.0		BYTE	B#16#0	Unused
12.0	Control byte	BYTE	B#16#0	Control bits for positioning
13.0	Checkback byte	BYTE	B#16#0	Checkback status bits from position- ing
14.0	Refpl	DINT	L#25	Reference point for BERO (edge of paint can) = 50 mm
18.0	Refp2	DINT	L#0	Reference point when filling

Table 6-27 Example 2: Positioning, DB 2 Structure

Statement Section You enter the following STL user program in the statement section of OB 1: **OB 1**

L (OB 1)			Explanation
twork 1			
Call post			
CALL	SFB 39	, DB59	
	T_VAL	:=DB2.DBD0	Destination pos. (center of paint can = 300 m
	_VAL	:=DB2.DBD4	Reference point for BERO
		F:=DB2.DBW8	Switch-off difference
BRE		:=DB2.DBB10 :=DB2.DBX12.0	Maximum velocity Jog mode forward
	_MODE1	:=	bog mode forward
	_	:=DB2.DBX12.1	Control signal: Evaluate reference point switc
	STRT	:=DB2.DBX12.2	Start positioning operation
SET	_POS	:=DB2.DBX12.3	Control signal: Accept REF_VAL as new actual
ACT	UAL_POS	:=	value
	_READY	:=DB2.DBX13.0	Checkback signal: Pos. op./jog mode terminate
	_VALID	:=DB2.DBX13.1	Checkback signal: Reference point switch reache
	_	:=DB2.DBX13.2	Checkback signal: Synchronization has taken plac
A _	BR	10 7	Scanning the BR bit (= ENO at SFB 39) for
= A	DB2.DBX DB2.DBX		error evaluation Paint can being filled
JC		12.0	Tarme can being titted
Setting 1	up the firs	t paint can	
	-	-	
A	I 0.	0	Momentary-contact switch: "Set up"
AN	I 0.	.1	Interlock with automatic mode
AN	DB2.DBX		Auxiliary memory marker for ref. point reache
=	DB2.DBX		Start jog mode forward
S L	DB2.DBX DB2.DBD		Evaluate reference point switch Load reference point for BERO (edge of
Т	DB2.DBD DB2.DBD		paint can) as new reference point
Ā	DB2.DBX		Reference point reached
 FP	DB2.DBX		Edge evaluation
S	DB2.DBX	12.4	Set memory marker for reference point reached
AN	I 0.	. 0	
R	DB2.DBX	12.4	Reset auxiliary marker if momentary-contact
			switch "Set up" released
Automatio	: mode		
	I 0.	1	If automatic switch not set and automatic
AN			auxiliary marker not set,
AN AN	DB2.DBX		
	DB2.DBX		then end
AN	DB2.DBX	14	
AN BEC		4	then end Load reference point for BERO (edge of paint can) as new reference point
AN BEC L T AN	DB2.DBD DB2.DBD DB2.DBX	4 12.2	then end Load reference point for BERO
AN BEC L T AN S	DB2.DBD DB2.DBD DB2.DBX DB2.DBX	4 12.2 12.2	then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation
AN BEC L T AN S S	DB2.DBD DB2.DBD DB2.DBX DB2.DBX DB2.DBX DB2.DBX	4 12.2 12.2 12.1	then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE
AN BEC L T AN S S S	DB2.DBD DB2.DBD DB2.DBX DB2.DBX	4 12.2 12.2	then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE Set auxiliary marker for targeted terminatin
AN BEC L T S S S BEC	DB2.DBD DB2.DBD DB2.DBX DB2.DBX DB2.DBX DB2.DBX DB2.DBX	4 12.2 12.2 12.1 12.7	then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE Set auxiliary marker for targeted terminatin of automatic mode
AN BEC L T S S S BEC A	DB2.DBD DB2.DBD DB2.DBX DB2.DBX DB2.DBX DB2.DBX DB2.DBX	4 12.2 12.2 12.1 12.7 13.0	<pre>then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE Set auxiliary marker for targeted terminatin of automatic mode If positioning operation terminated,</pre>
AN BEC L T S S S BEC A S	DB2.DBD DB2.DBD DB2.DBX DB2.DBX DB2.DBX DB2.DBX DB2.DBX DB2.DBX	4 12.2 12.2 12.1 12.7 13.0 12.6	<pre>then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE Set auxiliary marker for targeted terminatin of automatic mode If positioning operation terminated, then set marker for filling paint can</pre>
AN BEC L T S S S BEC A	DB2.DBD DB2.DBD DB2.DBX DB2.DBX DB2.DBX DB2.DBX DB2.DBX	4 12.2 12.2 12.1 12.7 13.0	<pre>then end Load reference point for BERO (edge of paint can) as new reference point Set: Start positioning operation Set control signal: REF_ENABLE Set auxiliary marker for targeted terminating of automatic mode If positioning operation terminated,</pre>

		Explanation	
Filli point	ng the container, accept reference		
m1:	NOP 0		
	L DB2.DBD 18	Load reference point	
	T DB2.DBD 4	for filling as new reference point	
	A T 1	If time out and	
	Α(
	O I 0.7	checkback signal: Paint can full	
	ON DB2.DBX 13.1	or if no paint can found	
)		
	R Q 4.0	then close filling valve	
	= DB2.DBX 12.3	Set reference point	
	R DB2.DBX 12.6	Reset marker for filling paint can	
	R DB2.DBX 12.7	Reset auxiliary marker for automatic	
	L S5T#500MS	Waiting time till drive standstill	
	A DB2.DBX 12.6		
	SD T 1		
	A T 1	If time out	
	A DB2.DBX 13.1	and BERO detected paint can,	
	s Q 4.0	open filling valve	

6.10.3 Positioning a Worktable

Introduction	The technical implementation of the example in Section 6.1.2 is shown be- low.
Task	Let's take again the example of the worktable which is used to position work- pieces.
	One or more machining operations are performed at a machining point. For this purpose, the worktable is stopped at the relevant position until machining of the workpiece has been completed. The worktable is moved via an axis.
Switching the System On	After switching the system on, the Positioning integrated function is synchro- nized as follows:
	Regardless of the actual position, the worktable is moved backward in jog mode via the user program until it reaches the left limit switch. The motor is switched off.
	Following this, the user program controls the worktable in jog mode forward until the right limit switch is reached. On the way, the reference point switch (BERO) is passed and the Positioning integrated function is synchronized. The motor is switched off.
	Following this, the positioning operation is started via the user program.
Positioning Operation Sequence (Automatic Mode)	The positioning operation is started via the user program. The worktable trav- els forward to each of 3 destination points lying in a line at which the work- piece is to be machined. The motor is switched off following the last machin- ing operation.
New Positioning Operation	After the motor has been switched off, the workpiece can be removed. The operator lays a new workpiece on the table and starts a new positioning operation via the user program (automatic mode).

Wiring Figure 6-31 shows the technology schematic and the wiring of the example. The power section is a contactor circuit.

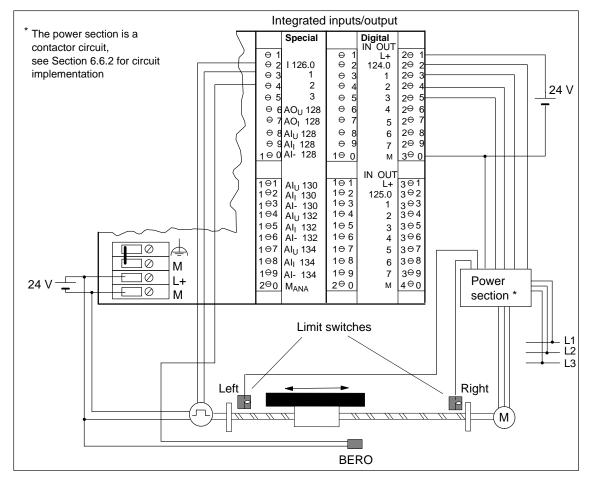


Figure 6-31 Positioning a Worktable

Function of the Inputs and Outputs Table 6-28 lists the functions of the inputs and outputs for the example.

Table 6-28Switching the Inputs and Outputs (Example 3)

Terminal	Input/ Output	Function in the Example
2	I 126.0	Encoder track A
3	I 126.1	Encoder track B
4	I 126.2	Reference point switch
21	L+	Supply voltage
22	Q 124.0	Creep speed
23	Q 124.1	Rapid traverse
24	Q 124.2	Backward direction

Terminal	Input/ Output	Function in the Example
25	Q 124.3	Forward direction
30	М	Ground
Connection of CPU voltage supply	L+	Supply voltage
Connection of CPU voltage supply	М	Ground

 Table 6-28
 Switching the Inputs and Outputs (Example 3)

Assigning mm Distance to Pulses (Distance Increments)

The incremental encoder supplies 250 pulses per revolution. 1 revolution of the incremental encoder corresponds to 10 revolutions of the motor. The incremental encoder therefore supplies 25 pulses per motor revolution. The worktable moves 3 mm per motor revolution.

3 mm: 25 pulses = 0.12 mm

One pulse is accordingly assigned a distance of 0.12 mm. 1 pulse corresponds to 1 distance increment.

In the example, the reference point switch is to be evaluated at each positioning operation. For this reason, it is located at the center of the distnace to be traversed.

In Figure 6-32, you can see the assignment of distances/pulses to the limit switches and the reference point switch (BERO). Conversion of mm to pulses (distance increments) is as follows:

500 mm : 0.12 mm = 4167 pulses (distance increments)

1000 mm : 0.12 mm = 8333 pulses (distance increments)

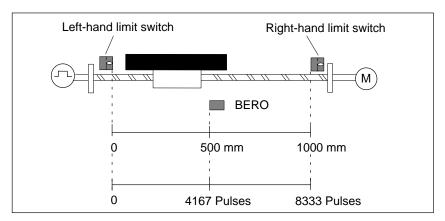


Figure 6-32 Assignment of Distances/Pulses to the Switches

Distance to be Covered

In the example, the worktable approaches 3 different destination positions one after the other:

Destination Position	Conversion for Specifying to SFB 39
1: 750 mm	750 mm : 0.12 mm per pulse = 6250 pulses (distance increments)
2: 400 mm	400 mm : 0.12 mm per pulse = 3333 pulses (distance increments)
3: 100 mm	100 mm : 0.12 mm per pulse = 833 pulses (distance increments)

Determining the Acceleration Distance/Stopping Distance

You must parameterize the stopping distance in the example. The stopping distance is the distance traversed at creep speed up to the switch-off point. This distance is set at 60 mm in the example.

60 mm : 0.12 mm per pulse = **500** pulses (distance increments)

Parameterizing with *STEP 7*

You parameterize the CPU with *STEP 7* as follows:

Table 6-29	Parameters f	for Positioning	a Worktable
------------	--------------	-----------------	-------------

Parameter	Input	Explanation
Drive control via	4 analog outputs (AQs)	The motor is driven via a contactor circuit in 2 speeds, rapid traverse and creep speed.
Acceleration dis- tance to maximum velocity (= stop- ping distance)	500	You define the distance in distance incre- ments in which the system accelerates to maximum velocity or traverses at creep speed.
Evaluation of the reference point switch in the case of	Forward direc- tion	The reference point switch is evaluated when it is reached in the forward direction.
Number of the instance DB	59	Instance DB for the example (default value)
Automatic updating at the cycle control point	Activated	The instance DB is updated at each cycle control point.

Determining the Switch-Off	To ensure that the destination position is reached as accurately as possible, you must:
Difference	1. Specify switch-off difference 0 to SFB 39 via the user program
	2. Move the worktable once via the Positioning integrated function
	3. Measure the difference between the actual destination position reached and the specified destination position
	4. Specify this difference as the switch-off difference to SFB 39
Instance DB of SFB 39	In the example, the data are stored in instance DB 59.
Initialization of SFB 39	Figure 6-33 shows SFB 39 with initialized parameters from DB 60 for setting up the worktable (jog mode backward).
	SFB 39
	EN ENO DB60.DBX 15.7
	0 — DEST_VAL ACTUAL_POS — DB60.DBD 10
	4167 REF_VAL POS_READY 1
	0
	0 BREAK POS_VALID 0
	0 POS_MODE2
	1 POS_MODE1
	0 REF_ENABLE
	0 - POS_STRT

Figure 6-33 Initialization of SFB 39 at Start-Up (3)

SET_POS

0

User Program Below is the user program for the example. It has been created with the *STL Editor* in *STEP* 7.

DB 60 The data for SFB 39 are stored in DB 60. The DB has the following structure:

Address	Name	Туре	Starting value	Comment
0.0		STRUCT		
+0.0	DEST_VAL	DINT	L#0	Always contains the currently valid destination position for drive (SW1, SW2 or SW3)
+4.0	REF_VAL	DINT	L#4167	Reference point for BERO = 500 mm
+8.0	SWITCH_OFF_DIFF	INT	0	Switch-off difference (calculated at startup)
+10.0	ACTUAL_POS	DINT	L#0	Output: Current actual value
+14.0	Control byte	BYTE	B#16#0	Control bits for positioning
+15.0	Checkback byte	BYTE	B#16#0	Checkback status bits from position- ing
+16.0	Istwl	DINT	L#0	Old actual value
+20.0	Swl	DINT	L#6250	Destination position for 1st machin- ing step (750 mm)
+24.0	Sw2	DINT	L#3333	Destination position for 2nd machin- ing step (400 mm)
+28.0	Sw3	DINT	L#833	Destination position for 3rd machin- ing step (100 mm)
+32.0	SK1	WORD	W#16#0	Auxiliary marker for sequencer
+34.0	SK2	WORD	W#16#0	Counter for jump-to list
=36.0		END_STRUCT		

Table 6-30Example 3: Positioning, Structure of DB 60

Statement Section You enter the following user program in the statement section of OB 1: **OB 1**

•	OB 1)			
Netwo				
	positic			
	CALL	SFB 39,	DB59	
	DES	T_VAL	:=DB60.DBD0	Destination position for drive
	REF	_VAL	:=DB60.DBD4	Reference point for BERO
	SWI	TCH_OFF_DIFF	:=DB60.DBW8	Switch-off difference
	BRE		:=	Unassigned means default value applies (0)
			:=DB60.DBX14.0	Jog mode forward
		_	:=DB60.DBX14.1	Jog mode backward
			:=DB60.DBX14.2	Control signal: Evaluate reference signal
		_	:=DB60.DBX14.3	Start positioning operation
		_	:=	Output, Current actual value
			:=DB60.DBD10 :=DB60.DBX15.0	Output: Current actual value Checkback signal: Pos. op./jog mode terminate
		_	:=DB60.DBX15.0	Checkback signal: Fos. Op. / Jog mode terminate Checkback signal: Reference point switch reache
			:=DB60.DBX15.2	Checkback signal: Synchronization has taken place
	A	BR		Scanning the BR bits (= ENO at SFB 39) for
	=		15.7	error evaluation
Check	ing tha	at drive is a	at standstill	
Check	ing tha	at drive is a	at standstill	
	L	S5T#200MS T 1		Scan for drive at standstill
	AN SD	т 1 т 1		If no change in position within 200 ms, then drive at standstill
		m1		then drive at standstill
		DB60.DBD	16	Save old actual value and
	L	DB60.DBD	10	current actual value
			-•	Callono accaal valao
	т	DB60.DBD	16	for next comparison
	т ==D	DB60.DBD	16	for next comparison
		DB60.DBD		for next comparison Memory bit for drive at standstill
m1:	==D			-
m1:	==D =	DB60.DBX	14.4	-
ml:	==D = NOP	DB60.DBX 0	14.4	Memory bit for drive at standstill
	==D = NOP A JC	DB60.DBX 0 DB60.DBX m13	14.4 14.5	Memory bit for drive at standstill
	==D = NOP A JC	DB60.DBX 0 DB60.DBX m13	14.4 14.5	Memory bit for drive at standstill
	==D = NOP A JC	DB60.DBX 0 DB60.DBX m13	14.4 14.5	Memory bit for drive at standstill
	==D = NOP A JC	DB60.DBX 0 DB60.DBX m13 ne system on	14.4 14.5	Memory bit for drive at standstill
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0	14.4 14.5	Memory bit for drive at standstill Memory bit for processing set
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 he system on	14.4 14.5 	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup"
	==D = NOP A JC hing th A FP	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX	14.4 14.5 	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX I 0.1	14.4 14.5 32.1 32.2	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX I 0.1 DB60.DBX	14.4 14.5 32.1 32.2	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode
	==D = NOP A JC hing th 	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX I 0.1 DB60.DBX DB60.DBX	14.4 14.5 32.1 32.2 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer
	==D = NOP A JC A FP AN AN S AN	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX I 0.1 DB60.DBX DB60.DBX DB60.DBX	14.4 14.5 32.1 32.2 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 De system on I 0.0 DB60.DBX I 0.1 DB60.DBX DB60.DBX DB60.DBX DB60.DBX M8	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list
	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU	DB60.DBX 0 DB60.DBX m13 ne system on I 0.0 DB60.DBX I 0.1 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBX m8 DB60.DBW m2 m3	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch
	==D = NOP A JC 	DB60.DBX 0 DB60.DBX m13 he system on I 0.0 DB60.DBX I 0.1 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis
	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU JU JU JU	DB60.DBX 0 DB60.DBX m13 he system on I 0.0 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4 m5	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis Start forward to right limit switch
	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU JU JU JU JU	DB60.DBX 0 DB60.DBX m13 he system on I 0.0 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4 m5 m6	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis Start forward to right limit switch Switch off axis
Switc	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU JU JU JU JU JU JU	DB60.DBX 0 DB60.DBX ml3 he system on I 0.0 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4 m5 m6 m7	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis Start forward to right limit switch
Switc	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU JU JU JU JU JU JU	DB60.DBX 0 DB60.DBX ml3 he system on I 0.0 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4 m5 m6 m7 0	14.4 14.5 32.1 32.2 32.0 32.0 34	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis Start forward to right limit switch Switch off axis
	==D = NOP A JC hing th A FP AN AN S AN JC L JL JU JU JU JU JU JU JU	DB60.DBX 0 DB60.DBX ml3 he system on I 0.0 DB60.DBX DB60.DBX DB60.DBX m8 DB60.DBW m2 m3 m4 m5 m6 m7	14.4 14.5 32.1 32.2 32.0 32.0	Memory bit for drive at standstill Memory bit for processing set Momentary-contact switch "Setup" Edge evaluation for momentary-contact switch Interlock with automatic mode Auxiliary marker for "Setup" sequencer Jump if not "Setup" Counter for jump-to list Call jump-to list Traverse to left limit switch Switch off axis Start forward to right limit switch Switch off axis

STL (0	OB 1) ((Continued)		Explanation
n3:	NOP	0		
	AN	DB60.DBX	14.1	
	S	DB60.DBX		Jog mode backward
	A	DB60.DBX	14.4	Axis still at standstill
	BEC	DBOU.DBA	71.1	AXIS STILL AL STANDSLILL
	-	1		Marsh share
	L	1		Next step
	T	DB60.DBW	34	
_	BEU	_		
n4:	NOP	0		
	AN	DB60.DBX	15.0	If positioning not terminated
	A	DB60.DBX	14.4	and drive at standstill,
	S	DB60.DBX	14.1	then switch axis to Stop
	S	DB60.DBX	14.0	
	ON	DB60.DBX	14.1	Wait for axis stop
	ON	DB60.DBX	14.0	
	BEC			
	L	2		Next step
	т	DB60.DBW	34	-
	BEU			
15 :	NOP	0		
	A	DB60.DBX	14.0	If Stop signal active,
	A	DB60.DBX		ii beop bignai accive,
	R			then react Stop gignal
		DB60.DBX		then reset Stop signal
	R	DB60.DBX	14.0	
	BEC			
	SET			
	S	DB60.DBX		Jog mode forward
	S	DB60.DBX		Set control signal: REF_ENABLE
	A	DB60.DBX	14.4	Axis still at standstill
	BEC			
	L	3		Next step
	т	DB60.DBW	34	
	BEU			
n6:	NOP	0		
	AN	DB60.DBX	15.0	Positioning not terminated
	А	DB60.DBX	14.4	Drive at standstill
	S	DB60.DBX		Switch axis to stop
	S	DB60.DBX		-
	ON	DB60.DBX		Wait for axis stop
	ON	DB60.DBX	14.1	· · · · · · · · · · · · · · · · · · ·
	BEC			
	L	4		Next step
	Т	JB60.DBW	34	New Breb
			51	
.7.	BEU	0		Torminato gotun
n7:	NOP	0		Terminate setup
	SET	BB60	14 1	Prest floor sime?
	R	DB60.DBX	14.1	Reset Stop signal
	R	DB60.DBX	14.0	(terminate setup)
	R	DB60.DBX	32.0	
	L	0		Reset counter for jump-to list
	т	DB60.DBW	34	
	BEU			

STL (C) (I B	Continued)		Explanation
Automa	atic mo	de		
	А	I 0.1		Momentary-contact switch for Automatic
	FP	DB60.DBX	32.3	Edge evaluation for momentary-contact switch
	AN	I 0.0		Interlock with "Setup"
	AN	DB60.DBX	32.0	··· ··· ···
	S	DB60.DBX	32.2	Set memory bit for "Automatic" sequencer
	AN	DB60.DBX	32.2	End if not "Automatic"
	BEC			
	L	DB60.DBW	34	Counter for jump-to list
	JL	m9		Call jump-to list
	JU	m10		Load 1st destination position
	JU	m11		Load 2nd destination position
	JU	m12		Load 3rd destination position
m9:	L	0		-
	т	DB60.DBW	34	
	BEU			
n10:	NOP	0		
	L	DB60.DBD	20	Load destination position for 1stmachining ste
	т	DB60.DBD	0	Save it as destination position for drive
	AN	DB60.DBX	14.3	Start positioning operation
	S	DB60.DBX	14.3	
	BEC			
	ON	DB60.DBX	15.0	If positioning operation not yet terminated
	ON	DB60.DBX	14.4	or drive running
	BEC			
	L	1		Next step
	т	DB60.DBW	34	
	SET			
	R	DB60.DBX	14.3	Reset control signal for start positioning
				operation
	S	DB60.DBX	14.5	Start machining
	BEU	_		
m11:	NOP	0		
	L	DB60.DBD	24	Load destination position for 2nd machining step
	Т	DB60.DBD	0	Save it as destination position for drive
	AN	DB60.DBX	14.3	Start positioning operation
	S	DB60.DBX	14.3	
	BEC		15 0	
	ON	DB60.DBX	15.0	If positioning operation not yet
	ON	DB60.DBX	14.4	terminated or drive running
	BEC			North star
	L	2	24	Next step
	T	DB60.DBW	34	
	SET	DBCO DDY	14 2	Deach control signal for start positioning
	R	DB60.DBX	14.3	Reset control signal for start positioning operation
	e	DB60.DBX	14.5	
	S	TROV. DAX	11.3	Start machining
	BEU			

STL (0	OB 1) (Continued)		Explanation
m12:	NOP	0	28	T 4 de et in et i en er eit i en fen Dudme et inien et
	L	DB60.DBD		Load destination position for 3rd machining sto
	Т	DB60.DBD	0	Save it as destination position for drive
	AN	DB60.DBX	14.3	Start positioning operation
	S	DB60.DBX	14.3	
	BEC			
	ON	DB60.DBX	15.0	If positioning operation not yet terminate
	ON	DB60.DBX	14.4	or drive running
	BEC			
	L	0		Next step
	т	DB60.DBW	34	
	SET			
	R	DB60.DBX	14.3	Reset control signal for start positioning
				operation
	S	DB60.DBX	14.5	Start machining
	R	DB60.DBX	32.2	Terminate automatic mode
	BEU			
 Machin				
n13:	NOP	0		Simulation of machining via waiting time
	A	т 2		
	R	DB60.DBX	14.5	Terminate machining
	-			
	L	S5T#2S		
		S5T#2S DB60.DBX	14.5	

Technical Specifications of the Frequency Meter Integrated Function

Technical Specifications

In Table A-1 you will find the technical specifications for the Frequency Meter integrated function.

No. of frequency meters	1
Measuring range	32 bits: from 0 to 10000000 mHz
Sample times	0.1 s/1 s/10 s
Measured signal	• Frequency limit: 10 kHz
	• Pulse time: $\geq 50 \ \mu s$
	• Pulse interval: $\geq 50 \ \mu s$
	• Signal state HIGH: $\geq 15 \text{ V}$
	• Signal state LOW: $\leq 5 \text{ V}$
Digital inputs of the inte-	Measurement:
grated inputs/outputs	• CPU 312 IFM I 124.6 (terminal 8)
	• CPU 314 IFM I 126.0 (terminal 2)
DC supply voltage	• CPU 312 IFM 24 V DC (terminal 18)
	• CPU 314 IFM 24 V DC (connected at CPU volt- age supply)
Ground	• CPU 312 IFM reference potential of supply volt- age (terminals 19/20; internally jumpered)
	• CPU 314 IFM reference potential of supply volt- age (connected at CPU voltage supply)
System function block	SFB 30

Figure A-1 shows the properties of the measured signal:

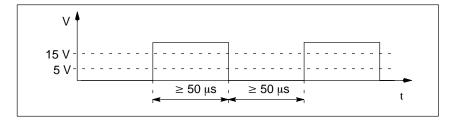


Figure A-1 Properties of the Measured Signal

Technical Specifications of the Counter Integrated Function

B

Technical Specifications

In Table B-1 you will find the technical specifications for the Counter integrated function.

No. of counters	1	
Counting range	32 bits: from -2147483648 to 2147483647	
Counting direction	Up and down	
Counting pulse	Frequency limit: 10 kHz	
	• Pulse time: $\geq 50 \ \mu s$	
	• Pulse interval: $\geq 50 \ \mu s$	
	• Signal state HIGH: $\geq 15 \text{ V}$	
	• Signal state LOW: $\leq 5 \text{ V}$	
Digital inputs of the inte-	CPU 312 IFM:	
grated inputs/outputs	• Up: I 124.6 (terminal 8)	
	• Down: I 124.7 (terminal 9)	
	• Direction: I 125.0 (terminal 10)	
	• Hardware start/stop: I 125.1 (terminal 11)	
	CPU 314 IFM:	
	• Up: I 126.0 (terminal 2)	
	• Down: I 126.1 (terminal 3)	
	• Direction: I 126.2 (terminal 4)	
	• Hardware start/stop: I 126.3 (terminal 5)	
DC supply voltage	• CPU 312 IFM 24 V DC (terminal 18)	
	• CPU 314 IFM 24 V DC (connected at CPU volt- age supply)	
Ground	• CPU 312 IFM reference potential of supply volt- age (terminals 19/20; internally jumpered)	
	• CPU 314 IFM reference potential of supply volt- age (connected at CPU voltage supply)	

 Table B-1
 Technical Specifications for Counter Integrated Function

Digital outputs of the inte- grated inputs/outputs	 Digital output A: Q 124.0 CPU 312 IFM (terminal 12) CPU 314 IFM (terminal 22) Digital output B: Q 124.1 CPU 312 IFM (terminal 13) CPU 314 IFM (terminal 23)
System function block	SFB 29

 Table B-1
 Technical Specifications for Counter Integrated Function

Figure B-1 shows the properties of the counting pulses:

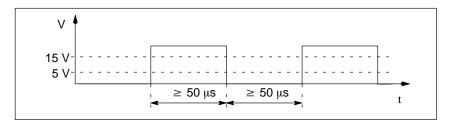


Figure B-1 Properties of the Counting Pulse

Technical Specifications of the Counter A/B Integrated Function (CPU 314 IFM)

Technical Specifications

Table C-1 lists the technical specifications of the Counter A/B integrated function.

Table C-1	Technical Specifications of the	Counter A/B Integrated Function
		B

Number of counters	2	
Count range	32 bits: from -2147483648 to 2147483647	
Count direction	Up and down	
Counter pulse	 Limit frequency: 10 kHz Pulse duration: ≥ 50 μs Pulse-pause: ≥ 50 μs Signal state HIGH: ≥ 15 V Signal state LOW: ≤ 5 V 	
Digital inputs of the inte- grated inputs/outputs	 Counter A: Up (up/down): I 126.0 (Special terminal 2) Counter A: Down (direction): I 126.1 (Special terminal 3) Counter B: Up (up/down): I 126.2 (Special terminal 4) Counter B: Down (direction): I 126.3 (Special terminal 5) 	
DC supply voltage	24 V DC (connected to CPU voltage supply)	
Ground	Reference potential of supply voltage (connected to CPU voltage supply)	
Digital outputs of the inte- grated inputs/outputs	 Counter A: Q 124.0 (Digital 22 terminal) Counter B: Q 124.1 (Digital 23 terminal) 	
System function block	SFB 38	

Properties of the Counter Pulses

Figure C-1 shows the properties of the counter pulses.

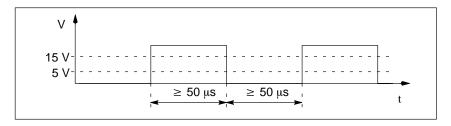


Figure C-1 Properties of the Counter Pulses

Technical Specifications of the Positioning Integrated Function (CPU 314 IFM)

Technical Specifications

Table D-1 lists the technical specifications of the Positioning integrated function.

Table D-1	Technical Specifications of the Desitioning Integrated Eurotion
Table D-1	Technical Specifications of the Positioning Integrated Function

Digital inputs of the inte- grated inputs/outputs DC supply voltage	 Track A: I 126.0 (Special 2 terminal) Track B: I 126.1 (Special 3 terminal) Reference point switch: I 126.2 (Special 4 terminal) 24 V DC (connected to CPU voltage supply) 	
Ground	Reference potential of supply voltage (connected to CPU voltage supply)	
M _{ANA}	Analog ground (Analog 20 terminal)	
Digital outputs of the inte- grated inputs/outputs	 Creep speed: Q 124.0 (Digital 22 terminal) Rapid traverse: Q 124.1 (Digital 23 terminal) 	
	 Backward direction Q 124.2 (Digital 24 terminal) Forward direction Q 124.3 (Digital 25 terminal) 	
Analog output of the inte- grated inputs/outputs	 Speed Voltage AQ_U 128 (Special 6 terminal) Current AQ_I 128 (Special 7 terminal) 	
System function block	SFB 39	
Encoder inputs, track A and	track B	
Position detection	• Incremental	
Signal voltage/current	Asymmetrical inputs: 24 V/typ. 4 mA	
Input frequency and cable length for asymmetrical en- coders with 24 V supply	• Max. 10 kHz at 100 m shielded cable length	

Input signals	 Incremental: 2 pulse trains shifted by 90° Zero mark signal 	
Counter pulse	 Limit frequency: 10 kHz Pulse duration: ≥ 50 μs 	
	 Pulse-pause: ≥ 50 μs Signal state HIGH: ≥ 18 V Signal state LOW: ≤ 5 V 	

Table D-1 Technical Specifications of the Positioning Integrated Function

Pulse Evaluation The Positioning integrated function of the CPU 314 IFM performs single evaluation of the encoder counter pulses. Single evaluation means, only the rising edge of pulse train A is evaluated.

Figure D-1 shows the pulse evaluation and the properties of the counter pulses.

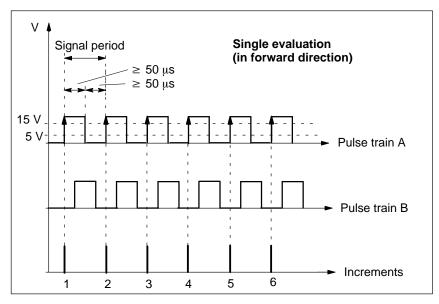


Figure D-1 Pulse Evaluation and Properties of the Counter Pulses

Suitable Incremental Encoders You can connect the following Siemens incremental encoder to the CPU 314 IFM:

• Incremental encoder U_p=24 V, HTL, Order number: 6FX 2001-4

Terminal Connection Model Encoder 6FX 2001-4

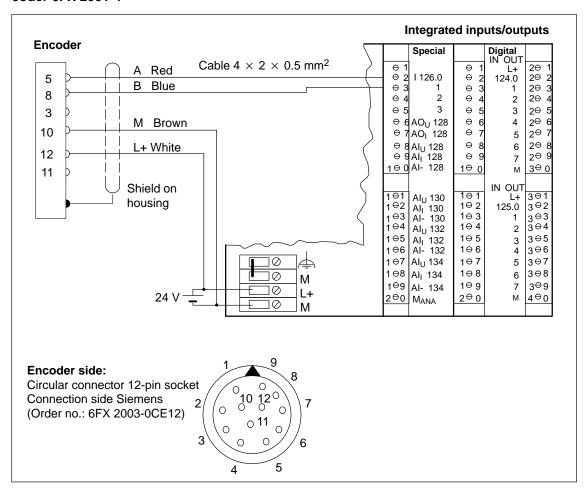


Figure D-2 Terminal Connection Model for Incremental Encoder 6FX 2001-4

Ε

Troubleshooting

Faults

Table E-1 provides tips on possible faults and how to eliminate them.

Table E-1 Troubleshooting

Fault	Fault Cause	Remedy
The integrated function no longer operates correctly.	The frequency limit was exceeded.	Eliminate the cause of the fault
There is a communication error (the connection may have been broken).		
The CPU switches to STOP.	The cycle load generated by the integrated	Increase the cycle monitoring time
Entry in diagnostics buffer:	function is too high.	Eliminate the cause of the fault
$3501_{\rm H}$ (cycle time monitoring)	Too many process interrupts have been triggered by the integrated function.	
The CPU switches to STOP.	The no. of the instance DB in the user	Standardize the no. of the instance
Entry in diagnostics buffer: 35A3 _H (data block access error)	program does not match the number con- figured with <i>STEP 7</i> .	DB
The fault occurs on operating mode changes or at the cycle checkpoint.	The instance DB does not exist, is not long enough or is write-protected.	Create instance DB, change the length or cancel the write protection
SFB output parameter $ENO = 0$,	Input parameter $EN = 0$ on SFB call.	No error or
i.e. the SFB was not executed or was executed with an error.		change user program
	The no. of the instance DB in the user program does not match the number configured with <i>STEP</i> 7.	Standardize the no. of the instance DB
	The instance DB does not exist, is not long enough or is write-protected.	Create instance DB, change the length or cancel the write protection
	The integrated function was not activated with <i>STEP</i> 7.	Reconfigure the integrated function with <i>STEP 7</i> .

F

SIMATIC S7 Reference Literature

Introduction	This Appendix contains references to manuals that you require for starting up and programming the S7-300.
	You will also find information on technical books containing information related to the S7-300.
Manuals for Programming and Starting Up	You will need the manuals listed in Table F-1 in order to program and start up an S7-300.

Table F-1Manuals for Programming and Starting Up of the S7-300

Manual	Contents
Manual Standard Software for S7 and M7, STEP 7	 Installing and starting up <i>STEP</i> 7 on a PC/programming device Handling <i>STEP</i> 7 with the following contents: Processing projects Configuring and assigning parameters to the hardware Assigning symbolic names for user program User program in STL/LAD (overview) Defining data types, data blocks Configuring communication between several CPUs Configuring links Loading, storing and deleting a user program in the CPU or the programming device Monitoring and controlling the user program (e.g. variables) Monitoring and controlling the CPU (e.g. operating state, memory reset, compress memory, protection levels)
Manuals Statement List (STL) for S7-300 and S7-400, Programming or Ladder Logic (LAD) for S7-300 and S7-400, Programming	 Fundamentals for working with STL/LAD (for example, STL/LAD structure, number formats, syntax) Description of all operations in STEP 7 (with program examples) Description of the various types of addressing in STEP 7 (with examples) Description of the CPU-internal registers
Reference Manual System Software for S7-300 and S7-400, System and Standard Functions	 Description of all standard functions integrated in STEP 7 Description of all system functions integrated in the CPUs Description of all organization blocks integrated in the CPUs

SIMATIC S7 Reference Literature, Continued

Table F-1Manuals for Programming and Starting Up of the S7-300, Continued

Manual	Contents	
Programming manual	Procedure for designing user programs	
System Software for S7-300 and S7-400, Program Design	• Principle of operation of the CPUs (for example, memory concept, access to inputs and outputs, addressing, blocks, data types, data management)	
	• Description of the STEP 7 data management	
	• Using STEP 7 data types	
	• Using linear and structured programming	
	Overview for data interchange between programmable modules	
	• Setting system parameters (e.g. time-of-day functions, module parameters and access protection)	
	• Using test and diagnostic functions of the CPUs in the user program (for example, error OBs, status word)	
Manual	Gives information on converting STEP 5 programs to STEP 7	
Standard Software for S7, Converting S5 Programs	• Working with the S5/S7 converter	
	Rules for conversion	
	• Use of converted STEP 5 standard function blocks in STEP 7	
Manual	Description of the programming device hardware	
PG 7xx	• Connecting the programming device to various other devices (for example, program- mable controllers, further programming devices, printers)	
	Starting up the programming device	

Using the Integrated Functions with the OP3

G

Introduction

The OP3 enables operator interface functionality with standard displays and the use of the integrated functions of the CPU 312 IFM and CPU 314 IFM.

In this Chapter

Section	Contents	Page
G.1	Introduction	G-2
G.2	Installing the Standard Configuration on Programming De- vice/PC and Transferring it to the OP3	G-3
G.3	System Configuration for Installation and Operation	G-4
G.4	Selecting and Using Standard IF Displays	G-6
G.5	Using the Standard IF Displays in ProTool/Lite	G-13
G.6	Accessing the Instance DB from OP3 and SFB	G-19

G.1 Introduction

Standard Configuration/ Standard Displays	A standard configuration for the OP3 is supplied with this manual (on diskette). This standard configuration contains displays for accessing the integrated functions of the CPU 312 IFM and CPU 314 IFM.
	These displays are referred to in this appendix as the standard IF displays.
Features of the Standard Configuration	The standard configuration is ready to use. When it has been installed and transferred to the OP3, you can start using the integrated functions immediately.
	With <i>ProTool/Lite</i> you can change the standard configuration or the standard displays to suit your application.
	The default setting of the integrated functions must not be changed.

G.2 Installing the Standard Configuration on Programming Device/PC and Transferring it to the OP3

Requirements	Before you can install the standard configuration on the Programming de- vice/PC and subsequently transfer it to the OP3, the following requirements must be met:
	• <i>ProTool/Lite</i> must be installed on the configuring computer (programming device/PC)
	• The OP must be connected to a 24 V power supply
	• The configuring computer (programming device/PC) must be linked to the OP. The connection is made via the MPI interface (see G.3 for possible arrangements).
Installation Diskette	The diskette supplied contains a standard configuration comprising one dis- play each for accessing the relevant integrated function of the S7-300. The name of the standard configuration is: IF_BILD.PDB.
Installing the Standard Configuration	 Procedure: Insert the diskette in one of the PC/programming device drives Copy the file IF_BILD.PDB into the directory Prolite/Standard Call up <i>ProTool/Lite</i> and open the configuration
Transferring the Configuration to the OP	Transfer the configuration to the OP3 as described in the <i>ProTool/Lite</i> user manual.

G.3 System Configuration for Installation and Operation

Connecting a Configuring Computer to the OP3	The configuring computer must be linked to the OP3 to transfer the standard configuration to it.		
	The link can be made in the following ways:		
	• Direct connection of the configuring computer to the OP.		
	• The OP3 is connected to a CPU 312 IFM/CPU 314 IFM. The configura- tion computer is connected to the CPU via a spur line and then discon- nected again after the standard configuration has been transferred.		
	• The OP3 and the configuring computer are both part of a multiple-node MPI network configuration.		
Requirements for Operation	The following requirements must be met before the S7-300 integrated func- tions can be accessed:		
	• The integrated functions have been parameterized with STEP 7 and are ready for use (default settings).		
	• The standard configuration with the displays for the integrated functions must be loaded on the OP3.		
	• The OP3 is connected to the CPU via the MPI (multipoint interface).		
Further Information	You will find detailed information on the connection facilities and the struc- ture of an MPI network in the <i>OP3</i> manual or in the manual <i>S7-300 Program-</i> <i>mable Controller, Installation and Hardware.</i>		

System Configuration of OP3 and S7 Programming Device/PC The following arrangements for configuring and operation are intended as examples to illustrate the connection possibilities. You will find more detailed information in the relevant manuals.

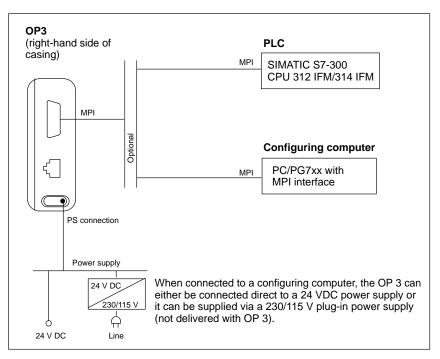


Figure G-1 Point-to-Point Connection (Setup for Configuring the OP3)

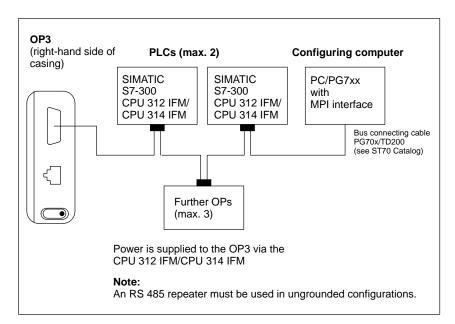


Figure G-2 Multipoint Connection

G.4 Selecting and Using Standard IF Displays

Frame of Reference	The following descriptions of how to select and use the standard IF displays are based on the standard configuration supplied.			
General Operations	The descriptions deal only with special operator actions in connection with the standard IF displays.			
	General operations, such as entering values, cancelling entries, etc., are described in the <i>OP3</i> manual.			

Section	Contents	Page
G.4.1	Selecting the Standard IF displays	G-7
G.4.2	Using the Standard Display for the Frequency Meter IF	G-8
G.4.3	Using the Standard Display for the Counter IF	G-9
G.4.4	Using the Standard Display for the Counter A or B IF	G-10
G.4.5	Using the Standard Display for the Positioning IF	G-11

G.4.1 Selecting the Standard IF Displays

Operating Hierarchy Figure G-3 shows the position of the standard IF displays in the standard configuration.

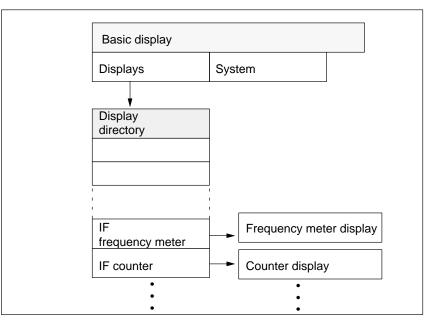


Figure G-3 Operating Hierarchy

Selecting the Standard IF Displays The integrated functions are accessed via the standard IF displays. To select one of these displays, proceed as follows:

Table G-1 Selecting the Standard IF Displays

Step	Description	Operator Action on OP3
1	Choose "Displays" in the initial display. The list of displays appears.	F2 (SHIFT + 2)
2	Select one of the standard IF dis- plays from the list of displays	<u>↓</u> , <u>↑</u>
3	Call up the display	(Enter)

G.4.2 Using the Standard Display for the Frequency Meter IF

IF frequency meter	
Frequency:	Ŷ
Comparison value UL curr: Hz	
Comparison value LL new: Hz	1 1
Comparison value UL curr.: Hz	
Comparison value UL	
new: Hz	

The standard display for the Frequency Meter IF has the following structure:

Figure G-4 Structure of the Standard Display for the Frequency Meter IF

Key to Display Items

Structure

The following table shows the meanings of the individual display items and the possible operator actions on the OP.

Table G-2 Standard Display for the Frequency Meter IF

Item	Meaning/Function	Operator Action on OP
Frequency	Current frequency display	-
Comparison val. LL current	Display of current comparison value for LL comparator	-
Comparison val. LL new	Display/entry of new comparison value for LL comparator	Entry: 0 10.000
Comparison value UL current	Display of current comparison value for UL comparator	-
Comparison value UL new	Display/entry of new comparison value for UL comparator	Entry: 0 10.000

G.4.3 Using the Standard Display for the Counter IF

Structure

The structure of the standard display for the Counter IF is as follows:

IF Counter	
Actual value:	Ą
Software Start/Stop F1=Start F3=Stop	
Start value:	Ϋ́
Comparison value A current:	
Comparison value A new:	
Comparison value B current:	
Comparison value B new:	

Figure G-5 Structure of the Standard Display for the Counter IF

Key to DisplayThe following table shows the meanings of the individual display items and
the possible operator actions on the OP.

Item	Meaning/Function	Operator Action on OP
Actual value	Current counter status display	-
Software Start/Stop	Starting/stopping counter Display of the current start/stop status	Selection list: Start or Stop*
Start value	Display/entry of the start value from which the counter is to start counting	Entry: -2,147,483,648 to +2,147,483,647
Comparison value A current	Display of current comparison value for comparator A	_
Comparison value A new	Display/entry of a new comparison value for comparator A	Entry: -2,147,483,648 to +2,147,483,647
Comparison value B current	Display of current comparison value for comparator B	-
Comparison value B new	Display/entry of a new comparison value for comparator B	Entry: -2,147,483,648 to +2,147,483,647

* You can also start the counter with the "F1" key and stop it with the "F3" key in each display item.

Structure

G.4.4 Using the Standard Display for the Counter A/B IF

Counter A (B) IF	Ą
Actual value:	
Enable: Start/Stop F1= Start F3=STOP	Ŷ
Reset: Yes/No	
Comparison value curr.:	
Comparison value new:	

The standard display for the Counter A/B IF has the following structure:

Figure G-6 Structure of the Standard Display for the Counter A/B IF

Key to DisplayTable G-4 shows the meanings of the individual display items and the pos-Itemssible operator actions on the OP:

Item	Meaning/Function	Operator Action on OP
Actual value	Display of the current counter value	-
Enable	Starting or stopping the counter Display of the current start/stop status	Selection list: Start or Stop*
Reset	Reset counter to parameterized re- set value	Selection list: Yes or No
Comparison value current	Display of current comparison value	-
Comparison value new	Display/entry of a new comparison value	Entry: -2,147,483,648 to +2,147,483,647

Table G-4 Standard Display for the Counter A/B IF

* You can also start the counter with the "F1" key and stop it with the "F3" key in each display item.

G.4.5 Using the Standard Display for the Positioning IF

Positioning IF	
Actual position:	Д
Synchronization Yes/No	
Jog backward: F1=Start /Stop Start/Stop	∇
Jog forward: F5=Start /Stop Start/Stop	
Dest. position:	
Positioning: Start/Stop	
Reference point:	
Set actual position: Yes/No	

Structure The standard display for the Positioning IF has the following structure:

Figure G-7 Structure of the Standard Display for Positioning IF

Key to Display Items

Table G-5 shows the meanings of the individual display items and the possible operator actions on the OP:

Table G-5 Standard Display for the Positioning IF

Item	Meaning/Function	Operator Action on OP
Actual position	Display of current actual position	
Synchronization	Indication of whether actual position is valid	
Jog backward	Starting and stopping jog backward	Selection list: Start or Stop*
Jog forward	Starting and stopping jog forward	Selection list: Start or Stop*
Destination position	Entry of destination position	Entry: -2,147,483,648 to +2,147,483,647
Positioning	Starting or terminating of the position- ing operation	Selection list: Start or Stop
Reference point	Entry of a new reference point	Entry: -2,147,483,648 to +2,147,483,647

Item	Meaning/Function	Operator Action on OP
Set actual posi-	Accept new reference point as new ac-	Selection list:
tion	tual position	Yes or no

Table G-5Standard Display for the Positioning IF

* In each display item, you can also:

start jog mode backward by pressing and holding the "F1" key stop jog mode backward by releasing the "F1" key

start jog mode forward by pressing and holding the "F5" key

stop jog mode forward by releasing the "F5" key

G.5 Using the Standard IF Displays in ProTool/Lite

Section	Section	Contents	Page
Overview	G.5.1	Items and Variables in the Standard IF Displays	G-14
G.5.2		Changing the Standard Configuration	G-16

G.5.1 Items and Variables in the Standard IF Displays

Standard	The standard configuration includes the following displays for the integrated
Configuration	functions:

Table G-6	Names and Functions of the Standard IF Displays
-----------	---

Standard Configuration IF_BILD.PDB				
Display Name Function				
ZIF_FREQ Frequency Meter				
ZIF_COUNTER Counter				
ZIF_HSC_A Counter A				
ZIF_HSC_B	Counter B			
ZIF_POS	Positioning			

Items and	The following tables show
Variables	• the individual items in each display
	and
	• the address areas accessed by the variables used

The functions and names of the variables in the standard displays correspond exactly to the input and output parameters of the instance DBs.

For detailed information on the input/output parameters of the instance DBs please refer to chapters 3 and 4 of this manual.

Tabelle G-7 ZIF_FREQ: Items and Variables

ZIF_FREQ						
Text	Variable Name	Address		Туре	Remarks	
Frequency:	FREQ	DB62	DBD10	Output	Current frequency value	
Comparison val. LL current	L_LIMIT	DB62	DBD18	Output	Current lower limit comparison value	
Comparison val. LL new	PRES_L_LIMIT	DB62	DBD4	Input/Output	New lower limit com- parison value	
Comparison value UL current	U_LIMIT	DB62	DBD14	Output	Current upper limit comparison value	
Comparison value UL new	PRES_U_LIMIT	DB62	DBD0	Input/Output	New upper limit com- parison value	

ZIF_COUNTER						
Text	Variable Name	Address		Туре	Remarks	
Actual value	COUNT	DB 63	DBD14	Output	Current counter status	
Software Start/Stop ¹	EN_COUNT	DB 63	DBX12.0	Output	Start/Stop counter	
Start value	PRES_COUNT	DB 63	DBD0	Input/output	Start value of counter	
Comparison value A current	COMP_A	DB 63	DBD18	Output	Current comparison value A	
Comparison value A new	PRES_COMP_A	DB 63	DBD4	Input/output	New comparison value A	
Comparison value B current	COMP_B	DB 63	DBD22	Output	Current comparison value B	
Comparison value B new	PRES_COMP_B	DB 63	DBD8	Input/output	New comparison value B	

Table G-8	ZIF_COUNTER: Items and Variables
-----------	----------------------------------

 Table G-9
 ZIF_HSC_A or ZIF_HSC_B: Entries and Variables

ZIF_COUNTER						
Text	Variable Name	Address		Туре	Remarks	
Actual value	A_COUNT ¹	DB 60*	DBD6	Output	Current counter status	
Enable	A_EN_COUNT ¹	DB 60*	DBX4.0	Input/output	Counter enable	
Reset	A_RESET ¹	DB 60*	DBX4.1	Input/output	Reset counter	
Comparison value current	A_COMP ¹	DB 60*	DBD10	Output	Current comparison value	
Comparison value new	A_PRES_COMP ¹	DB 60*	DBD0	Input/output	New comparison value	

 1 $\,$ A_... for counter A; B_... for counter B

* DB 60 for counter A; DB 61 for counter B

ZIF_POS												
Text	Variable Name	Ado	lress	Туре	Remarks							
Actual position	ACTUAL_POS	DB 59	DBD12	Output	Current position							
Synchronization	POS_VALID	DB 59	DBX16.2	Output	Actual position is valid							
Jog backward	POS_MODE1	DB 59	DBX11.1	Input/output	Jog mode backward							
Jog forward	POS_MODE2	DB 59	DBX11.0	Input/output	Jog mode forward							
Destination position	n DEST_VAL DB 59 DBD0		DBD0	Input/output	Destination position							
Positioning	POS_STRT	DB 59	DBX11.3	Input/output	Start positioning operation							
Reference point	REF_VAL	DB 59	DBD4	Input/output	New reference point							
Set actual position	SET_POS	DB 59	DBX11.4	Input/output	Set actual position							

Table G-10 ZIF_POS: Entries and Variables

G.5.2 Changing the Standard Configuration

Purpose	You can adapt the standard configuration to suit the requirements of your plant or application.
	For example, you can modify:
	• Operator guidance for calling the standard IF displays
	• The treatment of inputs/outputs, e.g. conversion
	• The PLC and the data interface to the instance DBs
Examples	The following tables show some of the changes you can make to the configu- ration.

 Table G-11
 Modifying Operator Guidance

	Operator Guidance								
Configurable:	Description	Menu Item/Dialog Box in ProTool/Lite							
User-defined operat- ing hierarchy	<i>ProTool/Lite</i> enables you to link displays as you like. You can also incorporate IF displays in existing projects	See <i>ProTool/Lite</i> documentation							
List of contents	You can specify which standard displays you want to include in the list of contents	Display editor: "Display" menu → "Attributes"							
Password protection	You can assign the value input variables a password level between 0 and 9	Display editor: Double-click relevant variable → "Input/ Output" dialog box							

	Displays							
Configurable:	Description	Menu Item/Dialog Box in ProTool/Lite						
Display name/title	You can change the symbolic name and the title of a display. The title of the display is also the name of the display entered in the list of contents.	Display editor "Display" menu → "Attributes"						
Display items and texts	You can delete, add or modify display items (software inputs/outputs of the IFs) and texts.	Display editor: Editing display items and texts						
Linear conversion	You can specify conversion for value in- put/output. This enables you to enter and monitor values in particular engineering units. The following conversion function is available: $\mathbf{y} = \mathbf{a}^* \mathbf{x} + \mathbf{b}$ Input value Value displayed	 Display editor: 1. Double-click relevant variable → "Input/Output" dialog box 2. "Edit" button→ "Variable" dialog box 3. "Functions" button → "Functions" dialog box 4. Choose "Linear conversion" 5. "Parameters" button → "Function parameters" dialog box → "Linear conversion" 6. Enter constants "a" and "b" 						
Range limits for en- tries	You can specify range limits for value input.	 Display editor: 1. Double-click relevant variable → "Input/Output" dialog box 2. "Edit" button → "Variable" dialog box 3. "Limits" button → "Limits" dialog box 4. Specify/change limit values 						

Table G-12 Modifying Displays

	PLC, Data Interface to Insta	nce DB
Configurable:	Description	Menu Item/Dialog Box in ProTool/Lite
Additional PLC	<i>ProTool/Lite</i> allows you to configure the OP3 for communication with up to two PLCs.	 Specifying additional PLC and parameters for MPI: Menu "PLC" → "Controller" "New" button → "Protocol" dialog box Adapting displays and variables: Duplicate all displays and variables requiring access to the second PLC "Variable" dialog box: enter PLC 2 for each duplicated variable
DB Nos. of the instance DBs	The OP3 accesses the instance DBs in the CPU direct.The default numbers for the standard IF displays are:ZIF-FREQ:DB62ZIF_COUNTER:DB63ZIF_COUNTER_A:DB 60ZIF_COUNTER_B:DB 61ZIF_POSDB 59Please note:If the DB No. of the instance DB in the CPU is changed, all the relevant variables of the individual IF displays must be adapted indi- vidually!	 Variable Editor: 1. "Variable" -> "Variable" dialog box 2. Enter DB No. again

Table G-13 Modifying the PLC and the Data Interface to the Instance DB

G.6 Accessing the Instance DB from OP3 and SFB

Function of the Standard IF Displays	The standard IF displays access the input/output variables of the instance DBs of the integrated functions direct. Entries on the OP are written straight to the instance DB.
Access from OP3 and SFB	The user program can also write data to the instance DBs with the SFBs for the integrated functions.
	No distinction is made between the OP3 and the user program for either write or read access to the instance DB.
Preventing Access Contention	To prevent simultaneous access to the instance DB from OP3 and PLC, you should ensure that each of the variables in the instance DB is only subject to write access from either the OP3 or the user program when writing your user program.

Glossary

Axis	The axis consists of toothed belt, spindle, toothed rack (pinion), hydraulic cylinder, gears and coupling system.
Changeover Point	At the changeover point, the drive is switched from rapid traverse to creep speed.
Comparator	A comparator compares the actual value of the Counter/Frequency Meter with a defined comparison value and triggers a reaction on certain events. An event occurs when the actual value reaches or falls below a specific counting value or frequency.
Counting Pulses	Counting pulses are positive or negative edges which are counted on the digi- tal inputs of the integrated inputs/outputs and cause the count (current value of the counter) to be incremented/decremented by 1.
Creep Speed	In the case of rapid traverse/creep speed drives, the system changes from rapid traverse to creep speed shortly before the destination position. This in- creases the accuracy of the positioning.
Destination Position	After a positioning operation is started, the axis approaches the destination position specified by the Positioning integrated function.
Differential Counting	Differential counting determines the difference between incoming and outgo- ing parts, for example, in a parts store.
Distance per En- coder Revolution	The distance per encoder revolution indicates the distance traveled by the axis in one encoder revolution.
Drive	The drive consists of the power controller and the motor that drives the axis.
Encoders	Encoders are used for accurate capturing of distances, positions and speeds.

Incremental Encoders	Incremental encoders capture distances, positions, velocities, rotational speeds, quantities and more by counting small increments.
Increments per En- coder Revolution	Increments per encoder revolution indicate the number of increments an en- coder gives per revolution.
Integrated Inputs/ Outputs	Integrated inputs/outputs are inputs and outputs located on the CPU.
Jog Mode	Jog mode moves the axis "manually" to any position.
Limit Switches	The working range of the axis is defined by 2 limit switches
Open-Loop Positioning	In open-loop positioning, the axis travels to the specified destination position without feedback of the actual value.
Periodic Counting	A periodic counting process is a counting process which is repeated (e.g. counter counts from 1 to 10 and starts again at 1).
Positioning	Positioning means bringing a load to a defined position within a certain time taking account of all influencing forces and torques.
Power Section	The power section is connected to outputs of the integrated inputs/outputs of the CPU 314 IFM. The power section drives the motor and consists of, for example, a contactor circuit.
Quadruple Evaluation	An incremental encoder evaluates all edges (4) of the pulse trains A and B.
Rapid Traverse	The destination position is approached first at rapid traverse.
Rapid Traverse and Creep Speed Drive	A rapid traverse and creep speed drive is a drive that approaches a position on an axis first at rapid traverse and then at creep speed. See also \rightarrow Rapid Traverse and \rightarrow Creep Speed
Reference Point	The reference point is the synchronization point between the Positioning inte- grated function and the actual position of the axis.
Reference Point Approach	A reference point approach synchronizes the Positioning integrated function with the actual position of the axis.

Reference Point Switch	The reference point switch determines the physical position of the reference point.
Sample Time	The sample time is the time interval in which the Integrated Function calculates a curent frequency value at the "Meter" digital input.
Switch-Off Difference	The switch-off difference is the difference in distance between the switch-off point and the destination position.
Switch-Off Point	The drive is switched off at a certain interval (switch-off difference) from the destination. This is the switch-off point. This ensures exact positioning of the axis.
Synchronization	Synchronization informs the Positioning integrated function of the actual position of the axis.
Traverse Range	The traverse range is the range within which the axis can move.
Zero Mark	The zero mark of the encoder supplies a zero mark signal after each revolu- tion of the encoder.
Zero Mark Signal	The zero mark signal is output by an incremental encoder after each revolu- tion.

Index

A

Aborting jog mode, 6-39 positioning operation, 6-40 Acceleration, frequency converter, 6-11 Acceleration distance, 6-20 frequency converter, 6-11 Accuracy, of measurement, 3-8, 3-9 Activation, 2-6 Actual position, of the axis, 6-5 Actual value of the counter, calculation, 4-3, 5-3 Actuator connection, 4-14, 5-12 terminals, 4-14, 5-12 Actuators connecting, 6-26 terminals, 6-26, 6-28 Analog value output in steps, 6-20 positioning integrated function, 6-20 Asynchronous motor, 6-4 Axis, Glossary-1

В

Block diagram
counter A/B integrated function, 5-2
counter integrated function, 4-2
frequency meter integrated function, 3-2
Boundary frequency, positioning integrated function, 6-18

С

CE, mark, iv
Change counting direction, 5-4
Change in CPU operating state, effect on positioning, 6-42
Changeover point, Glossary-1
Changing, standard configuration for OP3, G-16
Comparator, 3-5, 3-6, 4-5, 5-5, Glossary-1

Comparison value, 3-5, 4-5, 4-8, 4-9, 5-5 accepting, 3-6, 4-7, 5-6 current, 3-13 definition, 5-6 new, 3-6, 3-12, 4-7, 5-6 Configuration, 2-6 Contactor circuit, 6-4, 6-8, 6-9, 6-27 connecting, 6-26 Counter, 4-3 reset to reset value, 5-4 define start value, 4-4 Counter (A/B), 5-3 Counter A/B, parameter, 5-7 Counter integrated function start, 4-4, 4-11 stop, 4-4, 4-11 Counter pulses, C-2, D-2 Counting differential, Glossary-1 periodic, 4-40, Glossary-2 Counting direction, change, 4-4, 4-11 Counting event, 4-17 Counting pulses, B-2, Glossary-1 CPU, STOP operating state, 6-42 Cycle time, calculating, 3-17, 4-21, 5-18, 6-44

D

Destination position, 6-9, Glossary-1 Differential counting, 4-31, Glossary-1 Digital inputs, special, 1-5 Digital output configuration, 4-6, 5-6 enabling, 4-6 Drive, 6-4

Ε

Enable counter, 5-4 Enabling input, 3-12 Encoder asymmetrical, 6-3 signal shapes, 6-3 zero mark signal, 6-3, 6-24 Event, 5-5, 5-16 interrupt–triggering, 5-17 Event, 3-15, 4-5, 4-20, 4-23 interrupt–triggering, 3-16, 4-22

F

Frequency, 3-13 Frequency converter, 6-4, 6-8 analog value output in steps, 6-20 connecting, 6-28 controlling, 6-13, 6-22 speed profile, 6-11 Frequency limit, exceeded, 4-4, 5-4 Frequency Meter, 3-3 measuring principle, 3-3

Н

HOLD, 2-9

I

Implementation, procedure, 1-6 Incremental encoder, 6-3, 6-5 connecting, 6-24 suitable, D-3 Input, edge-controlled, 2-4 Input for the frequency meter integrated function, 1-4 Input parameters, 3-12, 4-17, 5-13 SFB 39, 6-30 Inputs for the counter A/B integrated function, 1-5Inputs for the counter integrated function, 1-4, 1-5Inputs for the frequency meter integrated function, 1-5 Inputs for the positioning integrated function, 1-5Installation, standard configuration for OP3, G-3 Instance DB, 2-3, 3-7, 3-14, 4-19 contents, 2-5 functions, 2-5 length, 3-14, 4-19, 5-15 updating, 2-5, 6-44

Instance DB for positioning length, 6-43 structure, 6-43 Instance DBs, access via IF displays, G-19 Instance-DB, 4-8 updating, 3-17, 4-21, 5-18 Integrated function inclusion, 2-2 properties, 1-2 Integrated functions, possible applications, 1-3 Integrated inputs, special inputs, 1-4 Integrated inputs/outputs, Glossary-2 special, 1-4, 1-5 Interrupt, 3-16, 4-20, 5-17 Interrupt inputs, 1-4, 1-5 Interrupt OB, 2-3, 3-16, 4-20, 5-17 Interrupt response time on the CPU, 2-4

J

Jog mode aborting, 6-39 execute, 6-38 positioning integrated function, 6-7 terminating, 6-39 velocity, 6-8

L

Limit frequency, exceeded, 3-4 Limit switch, 6-7, Glossary-2

Μ

Mark, CE, iv Maximum speed, frequency converter, 6-11 Measured signal, A-2 Measurement accuracy, 3-8, 3-9 resolution, 3-8, 3-9 Measurement error, calculation, 3-8, 3-9 Modify variable, 2-7

0

OB 40, 2-3, 4-20 start information for integrated I/Os, 3-16, 5-17 OP 3 linking configuring computer, G-4 standard configuration, G-2 Operating, the standard IF displays, G-7 Operating mode of the CPU RUN, 2-8 START, 2-8 STOP, 2-8 Operating mode transitions of the CPU, 2-9 Operator interface, 2-5 Operator panel, 2-5 Output parameter, 4-18 SFB 39, 6-32 Output parameters, 3-13, 5-14

Ρ

Performance features, positioning integrated function, 6-1 Periodic counting, Glossary-2 Positioning, parameter, 6-19 Positioning integrated function analog value output, 6-20 boundary frequency, 6-18 effects of a change in CPU operating state, 6-42 hardware inputs/outputs, 6-17 inputs and outputs, 6-15, 6-16 performance features, 6-1 software inputs/outputs, 6-17 Positioning operation aborting, 6-40 example, 6-36, 6-41 executing, 6-40 sequence, 6-15 terminating, 6-40 Power failure, 2-5 Power section, Glossary-2 connecting, 6-26 positioning integrated function, 6-4 Process interrupt, 2-3, 3-16, 4-20, 5-17 Pulse evaluation, positioning integrated function, D-2

R

Rapid traverse and creep speed, speed profile, 6-9 Rapid traverse/creep speed, controlling, 6-22 Reaction, configurable, 4-6, 5-5 Reference literature, F-1 Reference point, 6-5, Glossary-2 accuracy, 6-6 Reference point approach, 6-5, Glossary-2 Reference point switch, 6-5, 6-6, Glossary-3 connecting, 6-24 repeat accuracy, 6-6 Remedy, E-1 Response, configurable, 3-5 Response path, 4-23, 5-19 Response time, 4-21, 4-23, 5-18, 5-19 Resynchronization, of the integrated function, 6-35 Retentivity, 2-5 RUN, 2-9

S

Sample time, 3-3, 3-7, Glossary-3 Scan cycle checkpoint, 2-3 Sensor, connection, 3-10 Sensors connection. 4-11 terminals, 3-10, 4-12 SFB, 2-3, 2-4 calling, 2-4 interrupting, 2-4 not calling cyclically, 2-4 runtime, 3-17, 4-21, 5-18 **SFB 29** input parameters, 4-17, 5-13 output parameters, 4-18, 5-14, 6-32 **SFB 30** input parameters, 3-12 output parameter, 3-13 **SFB 38** input parameter, 5-13 output parameter, 5-14 **SFB 39** input parameters, 6-30 output parameters, 6-32 Shielding, 3-11, 4-13, 5-11, 6-25 Standard configuration changing, G-16 OP 3, G-2 transfer to the OP3, G-3 Standard configuration for OP3, installation, G-3 Standard display for counter IF display entries, address ranges, G-14 structure, G-9

Standard display for frequency meter IF display entries, address ranges, G-14 structure, G-8 Standard display for the counter A or B IF, structure, G-10 Standard display for the positioning IF, structure, G-11 Standard display IF-counter A/B, display entries, address ranges, G-14 Standard display IF-positioning, display entries, address ranges, G-14 Standard IF displays access to instance DBs, G-19 operating, G-7 Standard-digital inputs, 1-4, 1-5 START, 2-9 Start and destination position, effect of the distance, 6-22 Start information for integrated I/Os, OB 40, 3-16, 5-17 Status bit, 3-5, 3-12, 4-6 Status block, 2-7 Status variable, 2-7 STEP 7 manuals, F-1 STOP, 2-9 CPU operating state, 6-42 Stopping distance frequency converter, 6-11 rapid traverse and creep speed, 6-9 rapid traverse and creep speed drive, 6-9 Structure standard display for counter IF, G-9 standard display for frequency meter IF, G-8 standard display for the counter A or B IF, G-10 standard display for the positioning IF, G-11

Switch-off difference, Glossary-3 determining, 6-48 frequency converter, 6-12 rapid traverse and creep speed drive, 6-9 Switch-off point, Glossary-3 Synchronization, Glossary-3 of positioning integrated function, 6-33 Synchronizing, the positioning integrated function, 6-5, 6-7 Synchronous motor, 6-4 System function block (SFB). *See* SFB

Т

Technical specifications, A-1, B-1, C-1, D-1 Terminating jog mode, 6-39 positioning operation, 6-40 Test functions, 2-7 Time limits, to observe, 4-12, 5-10 Transfer, standard configuration to the OP3, G-3 Traverse range, Glossary-3

Ζ

Zero mark, Glossary-3 Zero mark signal, encoder, 6-3, 6-24 Siemens AG AS A&D E 48 Postfach 1963

D–92209 Amberg Federal Republic of Germany

From:

Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

Automotive	Pharmaceutical
Chemical	Plastic
Electrical Machinery	Pulp and Paper
Food	Textiles
Instrument and Control	Transportation
Nonelectrical Machinery	Other
Petrochemical	

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

- 1. Do the contents meet your requirements?
- 2. Is the information you need easy to find?
- 3. Is the text easy to understand?
- 4. Does the level of technical detail meet your requirements?
- 5. Please rate the quality of the graphics/tables:

Additional comments:

_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
_	-	_	—	—	—	-	_	—	—	—	—	_	_	—	—	—	_	—	_	—	_	_	—	—	_	—	_	_	—	—	_	_	_	_	—	-
_	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	_	_	—	-
—	-	—	_	_	_	-	_	—	—	—	—	—	—	—	—	—	—	_	—	_	_	—	_	—	—	—	—	—	—	—	—	—	—	_	_	-
_	-	-	_	_	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	_	_	-	-	-	-	-	-	-	_	_	_	_	_	_	_	_	-	_	-	-	_	-	-	_	_	-	_	_	_	_	-	_	-	_	-
 _	-	_	_	_	_	_	-	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_
 _	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	-
 _	-	_	_	_	_	_	-	_	_	-	-	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_
 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Siemens AG AS A&D E 48 Postfach 1963

D–92209 Amberg Federal Republic of Germany

From:

Your Name:
Your Title:
Company Name:
Street:
City, Zip Code:
Country:
Phone:

Please check any industry that applies to you:

Automotive	Pharmaceutical
Chemical	Plastic
Electrical Machinery	Pulp and Paper
Food	Textiles
Instrument and Control	Transportation
Nonelectrical Machinery	Other
Petrochemical	

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

Please give each of the following questions your own personal mark within the range from 1 (very good) to 5 (poor).

- 1. Do the contents meet your requirements?
- 2. Is the information you need easy to find?
- 3. Is the text easy to understand?
- 4. Does the level of technical detail meet your requirements?
- 5. Please rate the quality of the graphics/tables:

Additional comments:

_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
—	-	—	_	_	_	-	—	-	-	-	-	—	—	—	_	_	-	_	—	_	_	-	-	-	-	-	—	—	—	—	—	_	—	_	—	-
_	-	_	—	—	—	-	-	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	_	_	—	-
—	-	—	_	_	_	-	—	—	—	—	—	—	—	—	—	—	—	_	—	_	_	—	_	—	—	—	—	—	—	—	—	—	—	_	_	-
_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	_	_	-	-	-	-	-	-	-	_	_	_	_	_	_	_	_	-	_	-	-	_	-	-	-	_	-	_	_	_	_	-	_	-	_	-
 _	-	-	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	-	_	_	_	_
 _	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	-
 _	-	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_
 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_